YOMEDIA
NONE
  • Câu hỏi:

    Tập xác định D của hàm số \(y = \sqrt {\ln \left( {x - 1} \right) + \ln \left( {x + 1} \right)} .\)

    • A. \(D = \left( {1; + \infty } \right).\)
    • B. \(D = \left( { - \infty ;\sqrt 2 } \right).\)
    • C. \(D = \emptyset .\)
    • D. \(D = \left[ {\sqrt 2 ; + \infty } \right).\)

    Đáp án đúng: D

    Điều kiện xác định:  

    \(\begin{array}{l} \left\{ \begin{array}{l} x - 1 > 0\\ x + 1 > 0\\ \ln \left[ {\left( {x - 1} \right)\left( {x + 1} \right)} \right] \ge 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x > 1\\ {x^2} - 1 \ge 1 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x > 1\\ x \le - \sqrt 2 \vee x \ge \sqrt 2 \end{array} \right. \Leftrightarrow x \ge \sqrt 2 . \end{array}\)

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ LOGARIT VÀ HÀM SỐ LOGARIT

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON