YOMEDIA
NONE
  • Câu hỏi:

    Phương trình đã cho nào dưới đây có tổng hai nghiệm bằng 3?

    • A. \(2{x^2} + 6x + 1 = 0\)      
    • B. \(2{x^2} - 6x + 1 = 0\)     
    • C. \({x^2} - 3x + 4 = 0\)     
    • D. \({x^2} + 3x - 2 = 0\)   

    Lời giải tham khảo:

    Đáp án đúng: B

    +) Đáp án A: Giả sử phương trình có hai nghiệm \({x_1},\;{x_2}\) thì \({x_1} + {x_2} =  - \dfrac{b}{a} =  - \dfrac{6}{2} =  - 3 \ne 3 \Rightarrow \) loại đáp án A.

    +) Đáp án D: Giả sử phương trình có hai nghiệm \({x_1},\;{x_2}\) thì \({x_1} + {x_2} =  - \dfrac{b}{a} =  - 3 \ne 3 \Rightarrow \) loại đáp án D.

    +) Đáp án B: Giả sử phương trình có hai nghiệm \({x_1},\;{x_2}\) ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = S =  - \dfrac{b}{a} = \dfrac{6}{2} = 3\\{x_1}{x_2} = P = \dfrac{c}{a} = \dfrac{1}{2}\end{array} \right..\)

    Phương trình có hai nghiệm \({x_1},\;{x_2} \Leftrightarrow {S^2} \ge 4P \Leftrightarrow {3^2} \ge 4.\dfrac{1}{2} \Leftrightarrow 9 \ge 2\) (luôn đúng).

    \( \Rightarrow \) Đáp án B đúng.

    +) Đáp án C: Giả sử phương trình có hai nghiệm \({x_1},\;{x_2}\) ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = S =  - \dfrac{b}{a} = 3\\{x_1}{x_2} = P = \dfrac{c}{a} = 4\end{array} \right..\)

    Phương trình có hai nghiệm \({x_1},\;{x_2} \Leftrightarrow {S^2} \ge 4P \Leftrightarrow {3^2} \ge 4.4 \Leftrightarrow 9 \ge 16\) (vô lý).

    \( \Rightarrow \) Phương trình đã cho vô nghiệm.

    \( \Rightarrow \) Đáp án C sai.

    Chọn B.

    ATNETWORK

Mã câu hỏi: 381587

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON