YOMEDIA
NONE
  • Câu hỏi:

    Hai điểm sáng cùng dao động điều hoà trên trục Ox nằm ngang với phương trình dao động lần lượt là: \({{x}_{1}}=4\cos \left( 5\pi t \right)cm\); \({{x}_{2}}=4\sqrt{3}\cos \left( 5\pi t+\frac{\pi }{6} \right)cm\). Kể từ thời điểm ban đầu, tại thời điểm lần đầu tiên hai điểm sáng cách xa nhau nhất, tỉ số vận tốc của điểm sáng thứ nhất so với chất điểm thứ 2 là:

    • A. 1
    • B. \(-\sqrt{3}\).
    • C. -1
    • D. \(\sqrt{3}\).

    Lời giải tham khảo:

    Đáp án đúng: A

    Phương trình vận tốc của hai chất điểm:

    \(\left\{ \begin{align} & {{v}_{1}}=20\pi \cos \left( 5\pi t+\frac{\pi }{2} \right) \\ & {{v}_{1}}=20\pi \sqrt{3}\cos \left( 5\pi t+\frac{\pi }{6}+\frac{\pi }{2} \right)=20\pi \sqrt{3}\cos \left( 5\pi t+\frac{2\pi }{3} \right) \\ \end{align} \right.\)

    Ta có: \(d={{x}_{1}}-{{x}_{2}}=A\cos \left( \omega t+\varphi  \right)\)

    Với: \(\tan \varphi =\frac{4\sin 0-4\sqrt{3}\sin \frac{\pi }{6}}{4\cos 0-4\sqrt{3}\cos \frac{\pi }{6}}=\sqrt{3}\Rightarrow \varphi =\frac{\pi }{3}\Rightarrow d=A\cos \left( 5\pi t+\frac{\pi }{3} \right)\Rightarrow {{d}_{\max }}=A\Leftrightarrow d=\pm A\)

    Thời điểm đầu tiên t hai điểm sáng cách xa nhau nhất được biểu diễn trên đường tròn lượng giác:

    Góc quét được: \(\alpha =\frac{\pi }{6}+\frac{\pi }{2}=\frac{2\pi }{3}\Rightarrow t=\frac{\alpha }{\omega }=\frac{\frac{2\pi }{3}}{5\pi }=\frac{2}{25}s\).

    Tại \(t=\frac{2}{15}s\) tỉ số vận tốc của chất điểm 1 so với chất điểm 2:

    \(\frac{{{v}_{1}}}{{{v}_{2}}}=\frac{20\pi \cos \left( 5\pi .\frac{2}{15}+\frac{\pi }{2} \right)}{20\pi \sqrt{3}\cos \left( 5\pi .\frac{2}{15}+\frac{2\pi }{3} \right)}=\frac{-\frac{\sqrt{3}}{2}}{-\frac{\sqrt{3}}{2}}=1\).

    ATNETWORK

Mã câu hỏi: 282866

Loại bài: Bài tập

Chủ đề :

Môn học: Vật lý

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON