YOMEDIA
NONE
  • Câu hỏi:

    Giả sử phương trình \({{25}^{x}}+{{15}^{x}}={{6.9}^{x}}\) có 1 nghiệm duy nhất được viết dưới dạng \(\frac{a}{{{\log }_{b}}c-{{\log }_{b}}d}\), với \(a\) là số nguyên dương và \(b,c,d\) là các số nguyên tố. Tính \(S={{a}^{2}}+b+c+d\)?

    • A. \(S=19.\)             
    • B. \(S=14.\)    
    • C. \(S=11.\)                   
    • D. \(S=12.\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Phương trình: \({{25}^{x}}+{{15}^{x}}={{6.9}^{x}}\Rightarrow {{\left( \frac{25}{9} \right)}^{x}}+{{\left( \frac{15}{9} \right)}^{x}}-6=0\)

    \(\Leftrightarrow {{\left[ {{\left( \frac{5}{3} \right)}^{x}} \right]}^{2}}+{{\left( \frac{5}{3} \right)}^{x}}-6=0\\\Rightarrow \left[ \begin{align} & {{\left( \frac{5}{3} \right)}^{x}}=2 \\ & {{\left( \frac{5}{3} \right)}^{x}}=-3\left( L \right) \\ \end{align} \right.\)

    \(\Rightarrow x={{\log }_{\frac{5}{3}}}2=\frac{1}{{{\log }_{2}}\left( \frac{5}{3} \right)}=\frac{1}{{{\log }_{2}}5-{{\log }_{2}}3}\)

    \(\Rightarrow \left\{ \begin{align} & a=1 \\ & b=2 \\ & c=5 \\ & d=3 \\ \end{align} \right.\)\(\Rightarrow S={{a}^{2}}+b+c+d={{1}^{2}}+2+5+3=11\)

    Chọn C.

    ATNETWORK

Mã câu hỏi: 465523

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON