-
Câu hỏi:
Diện tích hình phẳng giới hạn bởi các đường \(y = {3^x},\) \(y = 0,\) \(x = 1,\) \(x = 2\) là
- A. \(\int\limits_1^2 {\left| {{3^x} - 1} \right|dx} \)
- B. \(\int\limits_0^2 {\left| {{3^x}} \right|dx} \)
- C. \(\int\limits_1^2 {{3^x}dx} \)
- D. \(\pi \int\limits_1^2 {{9^x}dx} \)
Lời giải tham khảo:
Đáp án đúng: C
Diện tích hình phẳng giới hạn bởi các đường \(y = {3^x},\) \(y = 0,\) \(x = 1,\) \(x = 2\) là \(S = \int\limits_1^2 {\left| {{3^x}} \right|dx} = \int\limits_1^2 {{3^x}dx} \)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong không gian Oxyz, phương trình của đường thẳng đi qua điểm \(M\left( {0;1;0} \right)\) và vuông góc với mặt phẳng \(\left( P \right):x - 2y + z = 0\) là
- Cho \(I = 2\int\limits_0^m {x\sin 2xdx} \) và \(J = \int\limits_0^m {\cos 2xdx} \) với \(m \in \mathbb{R}\). Mệnh đề nào dưới đây đúng?
- Trong không gian Oxyz, khoảng cách từ điểm \(M\left( { - 1;2;0} \right)\) đến mặt phẳng \(\left( P \right):x - 2y - 2z - 4 = 0\) bằng
- Số phức \(z = 8 - 7i\) có phần thực và phần ảo lần lượt bằng
- Trong không gian Oxyz, phương trình của đường thẳng đi qua điểm \(M\left( {0;0;2} \right)\) và song song với đường thẳng d: \(\dfrac{x}{1} = \dfrac{y}{1} = \dfrac{{z - 1}}{{ - 2}}\) là
- Trong không gian Oxyz, cho hai điểm \(M\left( { - 2;0;1} \right),\,\,N\left( {0;2; - 1} \right)\). Phường trình của mặt cầu có đường kính MN là
- Cho \(\int\limits_0^1 {f\left( x \right)dx = 1} ,\) \(\int\limits_1^2 {f\left( x \right)dx = 2} \) và \(\int\limits_0^2 {g\left( x \right)dx = 4} \). Tính \(I = \int\limits_0^2 {\left[ {2f\left( x \right) - g\left( x \right)} \right]dx} \)
- Cho hàm số liên tục trên \(\left[ {0;1} \right]\) thỏa mãn \(\int\limits_0^1 {{{\left[ {f\left( x \right)} \right]}^2}dx} = 4\). Thể tích của khối tròn xoay do hình phẳng giới hạn bởi các đường \(y = f\left( x \right);\) \(y = 0,\) \(x = 0,\) \(x = 1\) quay quanh trục hoành bằng
- Tính \(I = 4\int\limits_0^m {\sin 2xdx} \) theo số thực m.
- Cho \(\int\limits_0^8 {f\left( x \right)dx = - 36} \). Tính \(I = \int\limits_0^2 {f\left( {4x} \right)dx} \).
- Trong không gian Oxyz, mặt phẳng \(\left( P \right):\,\,x - 3z + 2 = 0\) đi qua điểm nào sau đây?
- Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + 2y + 2z - 5 = 0\). Phương trình của mặt cầu có tâm \(I\left( { - 1;0;0} \right)\) và tiếp xúc với \(\left( P \right)\) là
- Tìm các số thực m, n thỏa mãn \(2m + \left( {n + i} \right)i = 3 + 4i\) với i là đơn vị ảo.
- Trong không gian Oxyz, phương trình của mặt phẳng đi qua ba điểm \(M\left( {0;0; - 1} \right),\) \(N\left( {0;1;0} \right)\) và \(E\left( {1;0;0} \right)\) là
- Tính tích phân \(I = \int\limits_0^1 {4x\sqrt {1 - {x^2}} } dx\) bằng cách đặt \(u = 1 - {x^2}\). Mệnh đề nào dưới đây đúng?
- Diện tích hình phẳng giới hạn bởi các đường \(y = {3^x},\) \(y = 0,\) \(x = 1,\) \(x = 2\) là
- Trong không gian Oxyz, cho ba điểm \(M\left( {1;1; - 2} \right),\) \(N\left( {3;0;3} \right),\) \(P\left( {2;0;0} \right)\). Một vecto pháp tuyến của mặt phẳng \(\left( {MNP} \right)\) có tọa độ là
- Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\left[ {0;1} \right],\) \(f\left( 0 \right) = 1\) và \(f\left( 1 \right) = 3\). Khi đó \(\int\limits_0^1 {f'\left( x \right)dx} \) bằng
- Trong không gian Oxyz, đường thẳng \(d:\,\,\left\{ \begin{array}{l}x = - 1 + t\\y = 2t\\z = 1 - 2t\end{array} \right.\) \(\left( {t \in \mathbb{R}} \right)\) đi qua điểm nào dưới đây?
- Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {2^x}\ln 4\) thỏa \(F\left( 0 \right) = 4\). Khi đó \(F\left( 1 \right)\) bằng
- Cho số phức z thỏa mãn \(z\left( {1 + i} \right) = 7 + i\). Môđun của số phức z bằng
- Cho \(I = 4\int\limits_0^m {{e^{\sin 2x}}\cos 2x.dx} \) với \(m \in \mathbb{R}\). Mệnh đề nào dưới đây đúng?
- Trong không gian Oxyz, hình chiếu vuông góc của điểm \(M\left( {2; - 2;3} \right)\) trên mặt phẳng \(\left( {Oyz} \right)\) có tọa độ là
- Diện tích của hình phẳng giới hạn bởi các đường \(y = 8x\ln x,\) \(y = 0,\) \(x = 1,\) \(x = e\) bằng
- Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường \(y = 4\cos x,\) \(y = 0,\) \(x = 0,\) \(x = \pi \) quay quanh trục hoành bằng
- Trong không gian Oxyz, cho ba mặt phẳng \(\left( P \right):2x + 4y - 2z + 2 = 0;\) \(\left( Q \right):x + 2y - z = 0;\) \(\left( R \right):x + 2y + z + 3 = 0\). Mệnh đề nào sau đây đúng?
- Cho \(I = \ln 3\int\limits_0^m {x{{.3}^x}dx} \) và \(J = \int\limits_0^m {{3^x}dx} \) với \(m \in \mathbb{R}\). Mệnh đề nào dưới đây đúng?
- Họ nguyên hàm của hàm số \(f\left( x \right) = 8{x^3} + 6x\) là
- Trong không gian Oxyz, xét vị trí tương đối của hai đường thẳng \({d_1}:\,\,\frac{{x + 1}}{2} = \frac{y}{1} = \frac{z}{1}\) và \({d_2}:\frac{x}{1} = \frac{{y + 1}}{{ - 2}} = \frac{z}{1}\)
- Trong không gian Oxyz, một vecto chỉ phương của đường thẳng \(d:\,\,\frac{x}{1} = \frac{{y + 1}}{2} = \frac{{z + 1}}{{ - 3}}\) có tọa độ là
- Trong không gian Oxyz, phương trình của mặt phẳng \(\left( {Oxz} \right)\) là
- Trong không gian Oxyz, phương trình của đường thẳng đi qua hai điểm \(M\left( { - 1; - 1; - 2} \right),\) \(N\left( {0;0; - 4} \right)\) là
- Gọi \({z_1},\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 5z + 7 = 0\). Giá trị của biểu thức \({\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) bằng
- Cho số phức \(z = 3 - 2i\). Trên mặt phẳng tọa độ Oxy, điểm biểu diễn của số phức \(\overline z \) có tọa độ là
- Trong không gian Oxyz, phương trình của mặt phẳng đi qua điểm \(M\left( {2;2;3} \right)\) và vuông góc với trục Oy là
- Trong không gian Oxyz, cho ba điểm \(M\left( {2;3; - 2} \right),\) \(N\left( { - 1;1;0} \right),\) \(P\left( {1; - 1;1} \right)\), góc giữa hai đường thẳng MN và NP bằng
- Trong không gian Oxyz, cho hai điểm \(M\left( { - 3;0;3} \right),\) \(N\left( {3;0; - 3} \right)\). Phương trình của mặt phẳng trung trực của đoạn thẳng MN là
- Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - y + z + 1 = 0\) và đường thẳng \(d:\frac{x}{1} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\). Hình chiếu vuông góc của d trên \(\left( P \right)\) có phương trình là
- Xét các số phức z thỏa mãn \(\left( {z + 4i} \right)\left( {\overline z + 6} \right)\) là số thuần ảo. biết rằng tập hợp các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
- Cho tập nghiệm của bất phương trình \(2{\left( {{{\log }_4}x} \right)^2} - 3{\log _4}x + 1 \le 0\) là \(\left[ {m;n} \right]\) với \(m,n \in \mathbb{R}\). Khi đó \(2m + n\) bằng