YOMEDIA
NONE
  • Câu hỏi:

    Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3x + 2\) song song với đường thẳng \(y = 9x - 14\)?

    • A. 1
    • B. 0
    • C. 3
    • D. 2

    Lời giải tham khảo:

    Đáp án đúng: A

    Xét hàm số \(y = {x^3} - 3{x^2} + 2{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( C \right)\) có: \(y' = 3{x^2} - 3\)

    Gọi \(M\left( {{x_0};{\mkern 1mu} {\mkern 1mu} {y_0}} \right)\) là điểm thuộc đồ thị hàm số \(\left( C \right)\) \( \Rightarrow M\left( {{x_0};{\mkern 1mu} {\mkern 1mu} x_0^3 - 3{x_0} + 2} \right).\)

    Khi đó phương trình tiếp tuyến của tại có dạng:

    \(\begin{array}{*{20}{l}}{{\mkern 1mu} d:{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}}\\{ \Leftrightarrow y = \left( {3x_0^2 - 3} \right)\left( {x - {x_0}} \right) + x_0^3 - 3{x_0} + 2}\\{ \Leftrightarrow y = \left( {3x_0^2 - 3} \right)x - 3x_0^3 + 3{x_0} + x_0^3 - 3{x_0} + 2}\\{ \Leftrightarrow y = \left( {3x_0^2 - 3} \right)x - 2x_0^3 + 2}\end{array}\)

    Ta có tiếp tuyến \(d\) song song với đường thẳng \(y = 9x - 14\)

    \( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{3x_0^2 - 3 = 9}\\{ - 2x_0^3 + 2 \ne {\rm{\;}} - 14}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x_0^2 = 4}\\{x_0^3 \ne 8}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{{x_0} = 2}\\{{x_0} = {\rm{\;}} - 2}\end{array}} \right.}\\{{x_0} \ne 2}\end{array}} \right. \Leftrightarrow {x_0} = {\rm{\;}} - 2\)\( \Rightarrow M\left( { - 2;{\mkern 1mu} {\mkern 1mu} 16} \right)\)

    Vậy có 1 điểm \(M\left( { - 2;{\mkern 1mu} {\mkern 1mu} 16} \right)\) thỏa mãn bài toán.

    Chọn A.

    ATNETWORK

Mã câu hỏi: 453901

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON