-
Câu hỏi:
Có bao nhiêu số nguyên dương \(y\) nhỏ hơn \(500\) sao cho ứng với mỗi \(y\) tồn tại ít nhất 9 số nguyên \(x\) thỏa mãn bất phương trình \({{x}^{4}}+2{{x}^{2}}-y+1\le {{\log }_{2}}\frac{\sqrt{2y+1}}{{{x}^{2}}+1}\)?
- A. \(210\).
- B. \(211\).
- C. \(212\).
- D. \(213\).
Lời giải tham khảo:
Đáp án đúng: B
Ta có bất phương trình \(\Leftrightarrow {{\left( {{x}^{2}}+1 \right)}^{2}}-y\le {{\log }_{2}}{{\left( 2y+1 \right)}^{\frac{1}{2}}}-{{\log }_{2}}\left( {{x}^{2}}+1 \right)\)
\(\Leftrightarrow 2{{\left( {{x}^{2}}+1 \right)}^{2}}-2y\le {{\log }_{2}}\left( 2y+1 \right)-{{\log }_{2}}{{\left( {{x}^{2}}+1 \right)}^{2}}\).
\(\Leftrightarrow 2{{\left( {{x}^{2}}+1 \right)}^{2}}+{{\log }_{2}}{{\left( {{x}^{2}}+1 \right)}^{2}}\le {{\log }_{2}}\left( 2y+1 \right)+2y+1-1\)
\(\Leftrightarrow 2{{\left( {{x}^{2}}+1 \right)}^{2}}+{{\log }_{2}}\left[ 2{{\left( {{x}^{2}}+1 \right)}^{2}} \right]\le {{\log }_{2}}\left( 2y+1 \right)+\left( 2y+1 \right)\)
Xét hàm đặc trưng \(f\left( t \right)=t+{{\log }_{2}}t\) với \(t\in \left( 0;+\infty \right)\).
Ta có: \(f'\left( t \right)=1+\frac{1}{t\ln 2}>0\)\(\forall t>0\Rightarrow f\left( t \right)\) đồng biến trên \(\left( 0;+\infty \right)\).
Do đó \(\left( * \right)\Leftrightarrow 2{{\left( {{x}^{2}}+1 \right)}^{2}}\le 2y+1\) \(\Leftrightarrow 2{{x}^{4}}+4{{x}^{2}}+1\le 2y\).
Đặt \(g\left( x \right)=2{{x}^{4}}+4{{x}^{2}}+1\) với \(x\in \mathbb{R}\).
Ta có: \(g'\left( x \right)=8{{x}^{3}}+8x\). Cho \(g'\left( x \right)=0\Leftrightarrow x=0\).
Lập bảng biến thiên ta có:
Dựa vào bảng biến thiên ta thấy \(2y\ge g(4)={{2.4}^{4}}+{{4.4}^{2}}+1=577\)\(\Rightarrow y\ge \frac{577}{2}=288,5\).
Do
\(\left\{ \begin{align} & y\in {{\mathbb{Z}}^{+}} \\ & y<500 \\ \end{align} \right.\)
\(\Rightarrow y\in \left\{ 289;290;...;499 \right\}\) \(\Rightarrow \) Có tất cả \(211\) giá trị nguyên thỏa mãn.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z+3}{2}\).
- Cho tập hợp \(A\) có \(7\) phần tử. Số tập con có \(3\) phần tử của tập \(A\) là
- Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?
- Cho số phức \(z=\frac{5}{2}-\frac{1}{2}i\). Tọa độ điểm \(M\) biểu diễn số phức \(z\) là
- Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:Hàm số đã cho
- Trong không gian \(Oxyz\), mặt phẳng \(\left( Oxz \right)\) có phương trình là
- Một hình nón có bán kính đáy bằng \(3\),
- Nghiệm của bất phương trình \({{\log }_{2}}x>1\) là
- Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau.
- Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên \(SA=2a\) và
- Tính đạo hàm của hàm số \(y={{3}^{2x+1}}.\)
- Một cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{13}}=8\) và công sai \(d=-3.\)
- Nguyên hàm của hàm số \(f(x)={{3}^{x}}-x\) là
- Thể tích \(V\) của khối lăng trụ tứ giác đều có chiều cao bằng \(3cm\)
- Tập xác định của hàm số \(y={{\left( {{x}^{2}}-x-2 \right)}^{-10}}\) là
- Cho hai tích phân \({\int\limits_{2}^{5}{f\left( x \right)\text{d}x}=8}\)
- Số đường tiệm cận của đồ thị hàm số \(y=\frac{x}{x-1}\) là:
- Cho hàm số \(f\left( x \right)\) liên tục trên tập \(\mathbb{R}\)
- Trong không gian với hệ toạ độ \(Oxyz\), cho điểm \(M\left( 2;-3;1 \right)\)
- Tìm tất cả các giá trị của tham số \(m\) để hàm số
- Cho \(a,b,c\) là các số dương khác \(1\) thoả mãn
- Với \(a\) là số thực dương tuỳ ý, \(\log \left( \frac{10}{{{a}^{2}}} \right)\) bằng:
- Mặt phẳng chứa \(\left( \Delta \right)\) và song song với \(AB\) có phương trình là
- Cho hàm số \(y=\frac{x+a}{bx+c}\) có đồ thị như hình dưới.
- Họ nguyên hàm của hàm số \(f\left( x \right)=3{{x}^{2}}-\frac{1}{x}+\frac{2}{{{x}^{2}}}\) là
- Số nghiệm thực phân biệt của phương trình \({{5}^{{{x}^{2}}}}{{3}^{{{x}^{2}}+1}}=1\) là
- Cho số phức \(z\) thỏa mãn \(3z+2\overline{z}={{\left( 4-i \right)}^{2}}\)
- Xếp ngẫu nhiên \(6\) học sinh nam và \(4\) học sinh nữ quanh một bàn tròn. Xác suất để các học sinh nữ luôn ngồi cạnh nhau là:
- :Trong mặt phẳng tọa độ \(O\,xy,\,\) tập hợp các điểm biểu diễn số phức \(z\)
- Xét tích phân \(I=\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}}{\frac{\sin 2x}{1+\cos x}dx}\). Nếu đặt \(t=\cos x\) thì tích phân \(I\) trở thành
- Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, biết \(BC=2a\)
- Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\). Góc giữa hai đường thẳng
- Cho hình nón đỉnh \(S\) có bán kính đáy bằng \(5a\). Gọi \(A\) và \(B\) là hai điểm thuộc đường tròn đáy sao cho \(AB=8a\)
- Thể tích khối tròn xoay tạo thành khi quay quanh trục hoành
- Trong không gian với hệ trục tọa độ \(Oxyz,\) cho điểm \(A\left( 1\,;\,1\,;\,2 \right)\), \(B\left( 2\,;\,3;\,-3 \right)\). Mặt cầu \(\left( S \right)\)
- Có bao nhiêu giá trị thực của tham số \(m\) để phương trình \(4{{z}^{2}}+4\left( m-1 \right)z+{{m}^{2}}-3m=0\) có hai nghiệm phức \({{z}_{1}}\), \({{z}_{2}}\)
- Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy là tam giác đều cạnh \(a.\)
- Cho hàm số \(y=\,f(x)=\,a{{x}^{3}}+b{{x}^{2}}+cx+d,\,\)\((a,\,b,\,c,\,d\,\in \mathbb{R},\,a\ne \,0)\)
- Trong không gian \(Oxyz\), cho hai đường thẳng \({{d}_{1}}:\frac{x-1}{2}=\frac{y}{1}=\frac{z+2}{-1}\) và \({{d}_{2}}:\frac{x-1}{1}=\frac{y+2}{3}=\frac{z-2}{-2}\)
- Trong không gian cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{y}^{2}}+{{\left( z-4 \right)}^{2}}=9\). Từ điểm \(A\left( 4;0;1 \right)\)
- Cho hàm số \(f\left( x \right)\) có đạo hàm và đồng biến trên \(\left[ 1;4 \right],\)
- Cho hàm số \(f\left( x \right)=\,{{x}^{4}}+2{{x}^{2}}+1\).
- Cho hàm số \(f\left( x \right)\) thỏa mãn \(f\left( 0 \right)=\frac{2}{3}\) và \(\left( \sqrt{x}+\sqrt{x+1} \right).{f}'\left( x \right)=1,\forall x\ge -1\).
- Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau
- Số giá trị nguyên nhỏ hơn \(2020\) của tham số \(m\) để phương trình\({{{\log }_{6}}\left( 2020x+m \right)={{\log }_{4}}\left( 1010x \right)}\)
- Có bao nhiêu cặp số nguyên dương \(\left( x;y \right)\) thỏa mãn điều kiện \(x\le 2022\)
- Cho hàm số \(y=f(x)\) có đạo hàm \({f}'(x)=(2-x){{\left( {{x}^{3}}-{{x}^{2}}-m \right)}^{2021}},\forall x\in \mathbb{R}\).
- Có bao nhiêu số nguyên dương \(y\) nhỏ hơn \(500\) sao cho ứng với mỗi \(y\) tồn tại ít nhất 9 số
- Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right)=\left( 2x+1 \right){{e}^{x-f\left( x \right)}}\)
- Xét các số phức \(w,{{z}_{1}},{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}}+1+2i \right|+\left| {{z}_{1}}-5-6i \right|=10\) và \(\left| w+i \right|=\frac{3\sqrt{5}}{5}\)