YOMEDIA
NONE
  • Câu hỏi:

    Cho tứ diện \(ABCD\) có \(AD \bot \left( {ABC} \right)\), \(DB \bot BC\), \(AB = AD = BC = a\). Kí hiệu \({V_1}\), \({V_2}\), \({V_3}\) lần lượt là thể tích của hình tròn xoay sinh bởi tam giác \(ABD\) khi quay quanh \(AD\), tam giác \(ABC\) khi quay quanh \(AB\), tam giác \(DBC\) khi quay quanh \(BC\). Trong các mệnh đề sau, mệnh đề nào đúng?

    • A. \({V_1} + {V_2} = {V_3}\).  
    • B. \({V_1} + {V_3} = {V_2}\). 
    • C. \({V_3} + {V_2} = {V_1}\). 
    • D. \({V_1} = {V_2} = {V_3}\). 

    Lời giải tham khảo:

    Đáp án đúng: A

    \(\left. \begin{array}{l}BC \bot AB\\BC \bot AD\end{array} \right\} \Rightarrow BC \bot AB\)  do đó tam giác ABC vuông cân tại B suy ra \(AC = a\sqrt 2 \)

    Ta có:

    \(\begin{array}{l}{V_1} = \dfrac{1}{3}\pi A{B^2}.AD = \dfrac{{\pi {a^3}}}{3};\\{V_2} = \dfrac{1}{3}.B{C^2}.AB = \dfrac{{\pi {a^3}}}{3}\\{V_3} = \dfrac{1}{3}\pi D{B^2}.BC\\\;\;\;\;\; = \dfrac{{\pi \left( {A{D^2} + A{B^2}} \right)}}{3}.BC = \dfrac{{2\pi {a^3}}}{3}\\ \Rightarrow {V_1} + {V_2} = {V_3}.\end{array}\)

    Chọn  A.

    ATNETWORK

Mã câu hỏi: 345111

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON