YOMEDIA
NONE
  • Câu hỏi:

    Cho số phức z thỏa mãn \(\left( 2-z \right)\left( \overline{z}+i \right)\) là số thuần ảo. Tập hợp điểm biểu diễn số phức z là đường nào sau đây:

    • A. \({\left( {x - 1} \right)^2} + {\left( {y - \frac{1}{2}} \right)^2} = \frac{5}{4}.\)
    • B. \({\left( {x + 1} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} = \frac{5}{4}.\)
    • C. \({\left( {x - \frac{1}{2}} \right)^2} + {\left( {y - 1} \right)^2} = \frac{5}{4}.\)
    • D. \({\left( {x - \frac{1}{2}} \right)^2} + {\left( {y - 1} \right)^2} = \frac{7}{4}.\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi điểm biểu diễn của số phức z = x + yi là M(x;y)

    \(\left( {2 - z} \right)\left( {\overline z  + i} \right) = \left( {2 - x - yi} \right)\left( {x - yi + i} \right) = (2x - {x^2} - {y^2} + y) - i(x + 2y - 2)\)

    \(\left( {2 - z} \right)\left( {\overline z  + i} \right)\) là số thuần ảo khi và chỉ khi \(2x - {x^2} - {y^2} + y = 0 \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - \frac{1}{2}} \right)^2} = \frac{5}{4}\)

    ATNETWORK

Mã câu hỏi: 258236

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON