YOMEDIA
NONE
  • Câu hỏi:

    Cho khối lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác đều, \(AB = 6a,\) với \(0 < a \in \mathbb{R},\) góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(45^\circ .\) Thể tích của khối lăng trụ đã cho bằng

    • A. \(54\sqrt 3 {a^3}.\)  
    • B. \(108\sqrt 3 {a^3}.\)  
    • C. \(27\sqrt 3 {a^3}.\) 
    • D. \(18\sqrt 3 {a^3}.\)  

    Lời giải tham khảo:

    Đáp án đúng: A

    Vì \(A'A \bot \left( {ABC} \right)\) nên góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {ABC} \right)\) là \(\widehat {A'BA} = 45^\circ \).

    \( \Rightarrow \Delta A'AB\) vuông cân tại \(A\) \( \Rightarrow A'A = AB = 6a\).

    Tam giác đều \(ABC\) có cạnh \(AB = 6a\) nên có diện tích bằng \(\dfrac{{\sqrt 3 {{\left( {6a} \right)}^2}}}{4} = 9\sqrt 3 {a^2}\).

    Thể tích của khối lăng trụ đã cho bằng \(6a.9\sqrt 3 {a^2} = 54\sqrt 3 {a^3}\).

    Đáp án A

    ATNETWORK

Mã câu hỏi: 330681

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON