YOMEDIA
NONE
  • Câu hỏi:

    Cho \(\int\limits_0^{\frac{1}{2}} {{x^n}{\rm{d}}x} = \frac{1}{{64}}\) và \(\int\limits_1^5 {\frac{{{\rm{d}}x}}{{2x - 1}}} = \ln m\), với m,n là các số nguyên dương. Khẳng định nào sau đây đúng?

    • A. n>m
    • B. 1<n+m<5
    • C. n<m
    • D. n=m

    Đáp án đúng: D

    Ta có:

     \(\begin{array}{l} \int\limits_0^{\frac{1}{2}} {{x^n}{\rm{d}}x = \frac{1}{{64}}} \Leftrightarrow \left. {\frac{{{x^{n + 1}}}}{{n + 1}}} \right|_0^{\frac{1}{2}} = \frac{1}{{64}} \Leftrightarrow \frac{1}{{n + 1}} \cdot \frac{1}{{{2^{n + 1}}}} = \frac{1}{{64}}\\ \Leftrightarrow n + 1 = 4 \Leftrightarrow n = 3. \end{array}\)

    Và \(\int\limits_1^5 {\frac{{{\rm{d}}x}}{{2x - 1}}} = \ln m \Leftrightarrow \frac{1}{2}\left. {\ln \left| {2x - 1} \right|} \right|_1^5 = \ln m \Leftrightarrow \frac{1}{2}\ln 9 = \ln m \Leftrightarrow m = 3.\)

    Vậy \(n=m.\).

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ NGUYÊN HÀM VÀ TÍCH PHÂN BIẾN ĐỔI VỀ DẠNG CƠ BẢN

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON