YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = \frac{{\left( {m - 1} \right)\sin x - 2}}{{\sin x - m}}.\) Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng \(\left( {0;\frac{\pi }{2}} \right).\) 

    • A. \(m \in \left( { - 1;2} \right)\) 
    • B. \(m \in \left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\) 
    • C. \(m \in \left( { - \infty ; - 1} \right] \cup \left[ {2; + \infty } \right)\) 
    • D. \(m \in \left( { - \infty ;0} \right] \cup \left[ {1; + \infty } \right)\) 

    Lời giải tham khảo:

    Đáp án đúng: B

    Đặt \(t = \sin x,\)  Do \(x \in \left( {0;\frac{\pi }{2}} \right)\) nên t > 0.

    Khi đó hàm số trở thành:

    \(y = \frac{{(m - 1)t - 2}}{{t - m}}\)

    \(y' = \frac{{ - m(m - 1) + 2}}{{{{(t - m)}^2}}} = \frac{{ - {m^2} + m + 2}}{{{{(t - m)}^2}}}\)

    Với m = -1 và m = 2 thì y' = 0 hàm số đã cho trở thành hàm hằng.

    Với \(m\neq -1\) và \(m\neq 2\) để hàm số đồng biến trên (0;1) thì:

    \(\left\{ \begin{array}{l} y' > 0,\forall t \in \left( {0;1} \right)\\ m \notin \left( {0;1} \right) \end{array} \right. \Rightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} m < - 1\\ m > 2 \end{array} \right.\\ m \notin \left( {0;1} \right) \end{array} \right. \)

    \(\Leftrightarrow \left[ \begin{array}{l} m < - 1\\ m > 2 \end{array} \right.\)

    Chọn B

    ATNETWORK

Mã câu hỏi: 411843

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON