YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = {x^2} + 5x + 4\) có đồ thị \(\left( C \right)\). Tìm tiếp tuyến của \(\left( C \right)\) tại các giao điểm của \(\left( C \right)\) với trục \(Ox\). 

    • A. \(y = 3x - 3\)hoặc\(y =  - 3x + 12\).
    • B. \(y = 3x + 3\)hoặc\(y =  - 3x - 12\). 
    • C. \(y = 2x - 3\) hoặc \(y =  - 2x + 3\). 
    • D. \(y = 2x + 3\) hoặc \(y =  - 2x - 3\). 

    Lời giải tham khảo:

    Đáp án đúng: B

    Hoành độ giao điểm của \(\left( C \right)\) với trục \(Ox\) thỏa mãn: \({x^2} + 5x + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 4\\x =  - 1\end{array} \right.\)

    + Với \(x =  - 4;y = 0 \Rightarrow \) PTTT tại điểm \(\left( { - 4;0} \right)\) có hệ số góc là: \(k = {f^/}\left( { - 4} \right) =  - 3\)

    Suy ra PTTT của \(\left( C \right)\) tại \(\left( { - 4;0} \right)\) là: \(y =  - 3\left( {x + 4} \right) \Leftrightarrow y =  - 3x - 12\).

    + Với \(x =  - 1;y = 0 \Rightarrow \) PTTT tại điểm \(\left( { - 1;0} \right)\) có hệ số góc là: \(k = {f^/}\left( { - 1} \right) = 3\)

    Suy ra PTTT của \(\left( C \right)\) tại \(\left( { - 1;0} \right)\) là: \(y = 3\left( {x + 1} \right) \Leftrightarrow y = 3x + 3\). 

    Chọn B 

    ATNETWORK

Mã câu hỏi: 431387

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON