-
Câu hỏi:
Cho hàm số \(f\left( x \right)\) có đạo hàm trên R và có đồ thi \(y = f\left( x \right)\) như hình vẽ. Xét hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right)\). Mệnh đề nào sau đây sai?
- A. Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( {0;2} \right)\).
- B. Hàm số \(g\left( x \right)\) đồng biến trên \(\left( {2; + \infty } \right)\).
- C. Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( { - \infty ; - 2} \right)\).
- D. Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( { - 1;0} \right)\).
Lời giải tham khảo:
Đáp án đúng: A
Xét trên khoảng \(\left( {2; + \infty } \right)\) ta có :
\(x \in \left( {2; + \infty } \right) \Leftrightarrow \left\{ \begin{array}{l}x > 0\\{x^2} - 2 \in \left( {2; + \infty } \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x > 0\\f'\left( {{x^2} - 2} \right) > 0\end{array} \right. \Leftrightarrow g'\left( x \right) > - 0 \Rightarrow \) Hàm số đồng biến trên \(\left( {2; + \infty } \right)\). Vậy đáp án B đúng.
Xét trên khoảng \(\left( { - \infty ; - 2} \right)\) ta có :
\(x \in \left( { - \infty ; - 2} \right) \Rightarrow \left\{ \begin{array}{l}x < 0\\{x^2} - 2 \in \left( {2; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x < 0\\f'\left( {{x^2} - 2} \right) > 0\end{array} \right. \Rightarrow g'\left( x \right) < 0 \Rightarrow \) Hàm số nghịch biến trên \(\left( { - \infty ; - 2} \right)\). Vậy đáp án C đúng.
Xét trên khoảng \(\left( {-1;0} \right)\) ta có :
\(x \in \left( { - 1;0} \right) \Rightarrow \left\{ \matrix{x < 0 \hfill \cr
{x^2} - 2 \in \left( { - 2; - 1} \right) \hfill \cr} \right. \Leftrightarrow\left\{ \matrix{x < 0 \hfill \cr f'\left( {{x^2} - 2} \right) > 0 \hfill \cr} \right. \Leftrightarrow g'\left( x \right) < 0 \Rightarrow \) Hàm số nghịch biến trên \(\left( {-1;0} \right)\). Vậy đáp án D đúng.Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Hàm số sau \(y = {x^3} - 3{x^2} - 5\) đồng biến trên khoảng nào dưới đây?
- Hàm số có đạo hàm bằng \(2x + \dfrac{1}{{{x^2}}}\) là:
- Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:
- Giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{\sqrt {{x^2} + 2} - 2}}{{x - 2}}\) bằng:
- Cho tập hợp S gồm 20 phần tử. Tìm số tập con gồm 3 phần tử của S.
- Đường cong ở hình bên là đồ thị của một trong bốn hàm số ở dưới đây. Hàm số đó là hàm số nào?
- Đồ thị hàm số cho sau \(y = \dfrac{{2x - 3}}{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
- Giá trị của m làm cho phương trình \(\left( {m - 2} \right){x^2} - 2mx + m + 3 = 0\) có 2 nghiệm dương phân biệt là:
- Trong các khẳng định sau, khẳng định nào là khẳng định sai?
- Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt phẳng (ABC), AH là đường cao trong tam SAB. Trong các khẳng định sau, khẳng định nào là khẳng định sai?
- Cho hàm số \(y = \dfrac{{{x^3}}}{3} + 3x^2 - 2\) có đồ thị là \(\left( C \right)\). Viết phương trình tiếp tuyến với đồ thị \(\left( C \right)\)biết tiếp tuyến có hệ số góc \(k = - 9?\)
- Cho tứ diện S.ABC có các cạnh SA, SB, SC đôi một vuông góc với nhau. Biết \(SA = 3a;\,\,SB = 4a;\,\,SC = 5a\). Tính theo a thể tích V của khối tứ diện S.ABC.
- Hàm số \(y = \dfrac{{2\sin x + 1}}{{1 - \cos x}}\) xác định khi:
- Cho hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {a;b} \right)\). Mệnh đề nào sau đây sai?
- Đạo hàm của hàm số \(y = \sin \left( {\dfrac{{3\pi }}{2} - 4x} \right)\) là:
- Phương trình sau \(\cos x - m = 0\) vô nghiệm khi m là:
- Cho hình chóp S.ABC có A’, B’ lần lượt là trung điểm của \(SA, SB\). Gọi \({V_1},\,\,{V_2}\) lần lượt là hể tích của khối chóp \(S.A’B’C\) và S.ABC. Tính tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\)?
- Trong mặt phẳng Oxy cho tam giác ABC có \(A\left( {2;1} \right);\,\,B\left( { - 1;2} \right);\,\,C\left( {3;0} \right)\). Tứ giác ABCE ABCE là hình bình hành khi tọa độ đỉnh E là cặp số nào dưới đây?
- Cho đường thẳng \(d:\,\,2x - y + 1 = 0\). Để phép tịnh tiến theo \(\overrightarrow v \) biến đường thẳng d thành chính nó thi \(\overrightarrow v \) phải là véc tơ nào sau đây:
- Hàm số nào sau đây đạt cực tiểu tại \(x = 0\)?
- Cho hàm số \(y = f\left( x \right)\) xác định trên R và có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng?
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt đáy (ABCD) và \(SA = 2a\). Tính theo a thể tích khối chóp S.ABC?
- Cho hàm số \(f\left( x \right)\) có đạo hàm trên R và có đồ thi \(y = f\left( x \right)\) như hình vẽ. Xét hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right)\). Mệnh đề nào sau đây sai?
- Tìm tất cả các giá trị của tham số m để hàm số \(y = \dfrac{{mx + 1}}{{x + m}}\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\).
- Cho cấp số nhân \(\left( {{u_n}} \right)\) có công bội q và \({u_1} > 0\). Điều kiện của q để cấp số nhân \(\left( {{u_n}} \right)\) có ba số hạng liên tiếp là độ dài ba cạnh của một tam giác là:
- Cho tam giác ABC có \(A\left( {1; - 1} \right);\,\,B\left( {3; - 3} \right);\,\,C\left( {6;0} \right)\). Diện tích \(\Delta ABC\) là:
- Tính tổng \(C_{2000}^0 + 2C_{2000}^1 + 3C_{2000}^2 + ... + 2001C_{2000}^{2000}\)?
- Cho hàm số sau \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng ?
- Gọi S là tập các giá trị dương của tham số m sao cho hàm số sau \(y = {x^3} - 3m{x^2} + 27x + 3m - 2\) đạt cực trị tại \({x_1};
- Cho hình hộp ABCD.A’B’C’D’ có tất cả các mặt là hình vuông cạnh a. Các điểm M, N lần lượt nằm trên AD’, DB sao cho \(AM = DN = x\,\,\left( {0 < x < a\sqrt 2 } \right)\).
- Cho đồ thị \(\left( C \right):\,\,y = \dfrac{{2x + 1}}{{x - 1}}\) . Gọi M điểm bất kì thuộc đồ \(\left( C \right)\).
- Cho khối hộp \(ABCD.A’B’C’D’\) có thể tích bằng \(2018\). Gọi \(M\) là trung điểm của cạnh \(AB\). Mặt phẳng \((MB'D')\) chia khối hộp \(ABCD.A’B’C’D’\) thành hai khối đa diện. Tính thể tích của phần khối đa diện chứa đỉnh \(A\).
- Cho lăng trụ tam giác ABC.A’B’C’. Đặt \(AA' = a;\,\,AB = b,\,\,AC = c\). Gọi I là điểm thuộc đường thẳng CC’ sao cho \(\overrightarrow {C'I} = \dfrac{1}{3}\overrightarrow {C'C} \),
- Cho hình chóp S.ABC có \(SA = 1;\,\,SB = 2;\,\,SC = 3\) và \(\widehat {ASB} = {60^0};\,\,\widehat {BSC} = {120^0};\,\,\widehat {CSA} = {90^0}\). Tính thể tích khối chóp S.ABC.
- Trong hệ tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng \(BC:\,\,x + 7y - 13 = 0\). Các chân đường cao kẻ từ B, C lần lượt là \(E\left( {2;5} \right);\,\,F\left( {0;4} \right)\). Biết tọa độ đỉnh A là \(A\left( {a;b} \right)\). Khi đó:
- Tìm tất cả các giá trị thực của tham số m sao cho phương trình sau \(3\sqrt {x - 1} + m\sqrt {x + 1} = 2\sqrt[4]{{{x^2} - 1}
- Nghiệm của phương trình \({\cos ^4}x + {\sin ^4}x + \cos \left( {x - \dfrac{\pi }{4}} \right)\sin \left( {3x - \dfrac{\pi }{4}} \right) - \dfrac{3}{2} = 0\) là:
- Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \({u_n} = \dfrac{1}{{{n^2}}} + \dfrac{3}{{{n^2}}} + ... + \dfrac{{2n - 1}}{{{n^2}}}\) với \(n \in N*\). Giá trị của \(\lim {u_n}\) bằng:
- Cho hình chóp S.ABCD đáy là hình thang vuông tại A và B, \(AB = BC = a;\,\,AD = 2a\). Biết SA vuông góc với đáy (ABCD), \(SA = a\). Gọi M, N lần lượt là trung điểm SB, CD. Tính sin góc giữa đường thẳng MN và mặt phẳng (SAC)
- Cho hai số thực x, y thay đổi thỏa mãn điều kiện \({x^2} + {y^2} = 2\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = 2\left( {{x^3} + {y^3}} \right) - 3xy\). Giá trị của \(M + m\) bằng:
- Đường dây điện 110KV kéo từ trạm phát (điểm A) trong đất liền ra đảo (điểm C). Biết khoảng cách ngắn nhất từ C đến B là 60km, khoảng cách từ A đến B là 100km,
- Tập hợp các giá trị của tham số m để hàm số \(y =| 3{x^4} - 4{x^3} - 12{x^2} + m - 1|\) có 7 điểm cực trị là:
- Tính tổng tất cả các nghiệm của phương trình \(\cos 2x - {\tan ^2}x = \dfrac{{{{\cos }^2}x - {{\cos }^3}x - 1}}{{{{\cos }^2}x}}\) trên đoạn \(\left[ {1;70} \right]\).
- Cho hàm số \(y = {x^3} - {x^2} + 2x + 5\) có đồ thị \(\left( C \right)\). Trong các tiếp tuyến của \(\left( C \right)\), tiếp tuyến có hệ số góc nhỏ nhất, thì hệ số góc của tiếp tuyến đó là
- Cho hàm số \(y = \dfrac{{x - 1}}{{m{x^2} - 2x + 3}}\). Có tất cả bao nhiêu giá trị của m để đồ thị hàm số có hai đường tiệm cận
- Cho hàm số \(y = \dfrac{{{x^2}}}{{1 - x}}\). Đạo hàm cấp 2018 của hàm số \(f\left( x \right)\) là:
- Có tất cả bao nhiêu giá trị nguyên của \(m \ge - 10\) sao cho đồ thị hàm số \(y = \dfrac{{{x^2} + \sqrt {x - 1} }}{{{x^2} + \left( {m - 1} \right)x + 1}}\) có đúng một tiệm cận đứng?
- Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_5} = - 15\); \({u_{20}} = 60\). Tổng 20 số hạng đầu tiên của cấp số cộng là:
- Giá trị nhỏ nhất của hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\) là:
- Trong không gian với hệ tọa độ \({\rm{Ox}}yz\)cho hai mặt phẳng \(\left( P \right):2x + my - z + 1 = 0\) và \(\left( Q \right):x + 3y + \left( {2m + 3} \right)z - 2 = 0\).