YOMEDIA
NONE
  • Câu hỏi:

    Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z =  - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:

    • A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)
    • B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)
    • C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)
    • D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Gọi \(\overrightarrow {{u_1}}  = \left( { - 2;1;0} \right)\) và \(\overrightarrow {{u_2}}  = \left( {0;1; - 1} \right)\) lần lượt là 1 VTCP của \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\).

    Gọi AB là đoạn vuông góc chung của \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\),  với \(A\left( {4 - 2t;t;3} \right) \in {d_1}\), \(B\left( {1;t'; - t'} \right) \in {d_2}\).

    Ta có: \(\overrightarrow {AB}  = \left( { - 3 + 2t;\,\,t' - t;\,\, - t' - 3} \right)\).

    Vì AB là đoạn vuông góc chung của \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) nên \(\left\{ \begin{array}{l}AB \bot {d_1}\\AB \bot {d_2}\end{array} \right.\).

    \( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AB} .\overrightarrow {{u_1}}  = 0\\\overrightarrow {AB} .\overrightarrow {{u_2}}  = 0\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}\left( {2t - 3} \right).\left( { - 2} \right) + t' - t = 0\\t' - t + t' + 3 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}t = 1\\t' =  - 1\end{array} \right.\)

    \( \Rightarrow A\left( {2;1;3} \right),\,\,B\left( {1; - 1;1} \right)\).

    Mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) nhận AB là đường kính.

    \( \Rightarrow \) Tâm mặt cầu là trung điểm của AB, có tọa độ \(I\left( {\frac{3}{2};0;2} \right)\), bán kính \(R = IA = \sqrt {\frac{1}{4} + 1 + 1}  = \frac{3}{2}\).

    Vậy phương trình mặt cầu cần tìm là: \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\).

    ATNETWORK

Mã câu hỏi: 255605

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON