YOMEDIA
NONE
  • Câu hỏi:

    Cho đồ thị của hàm số \(y = {x^3} - 6{x^2} + 9x - 2\) như hình vẽ. Khi đó phương trình \(\left| {{x^3} - 6{x^2} + 9x - 2} \right| = m\) (m là tham số) có 6 nghiệm phân biệt khi và chỉ khi. 

    • A. \( - 2 \le m \le 2\). 
    • B. \(0 < m < 2\). 
    • C. \(0 \le m \le 2\).    
    • D. \( - 2 < m < 2\). 

    Lời giải tham khảo:

    Đáp án đúng: B

    Từ đồ thị hàm số \(y = {x^3} - 6{x^2} + 9x - 2\) ta suy ra đồ thị hàm số \(y = \left| {{x^3} - 6{x^2} + 9x - 2} \right|\) như sau:

    Số nghiệm của phương trình \(\left| {{x^3} - 6{x^2} + 9x - 2} \right| = m\) là số giao điểm của đồ thị hàm số \(y = \left| {{x^3} - 6{x^2} + 9x - 2} \right|\) và đường thẳng \(y = m\) song song với trục hoành.

    Dựa vào đồ thị hàm số ta thấy: Để phương trình có 6 nghiệm phân biệt \( \Leftrightarrow 0 < m < 2\).

    Chọn B.

    ATNETWORK

Mã câu hỏi: 393300

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON