YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABC có đáy là \(\Delta ABC\) vuông cân ở \(B,{\mkern 1mu} \)\(AC = a\sqrt 2 ,{\mkern 1mu} \)\(SA \bot \left( {ABC} \right),\) \(SA = a.\) Gọi \(G\) là trọng tâm của \(\Delta SBC\), \(mp\left( {\alpha {\rm{\;}}} \right)\) đi qua AG và song song với BC chia khối chóp thành hai phần. Gọi \(V\)là thể tích của khối đa diện không chứa đỉnh \(S\). Tính V.

    • A. \(\dfrac{{5{a^3}}}{{54}}.\)   
    • B. \(\dfrac{{4{a^3}}}{9}.\) 
    • C. \(\dfrac{{2{a^3}}}{9}.\)  
    • D. \(\dfrac{{4{a^3}}}{{27}}.\) 

    Lời giải tham khảo:

    Đáp án đúng: A

    Trong \(\left( {SBC} \right)\) qua \(G\) kẻ \(MN//BC{\mkern 1mu} {\mkern 1mu} \left( {M \in SB,{\mkern 1mu} {\mkern 1mu} N \in SC} \right)\). Khi đó mặt phẳng đi qua AG và song song với BC chính là mặt phẳng \(\left( {AMN} \right)\). Mặt phẳng này chia khối chóp thành 2 khối S.AMN và AMNBC.

    Gọi \(H\) là trung điểm của \(BC\).

    Vì \(MN//BC \Rightarrow \) Theo định lí Ta-lét ta có: \(\dfrac{{SM}}{{SB}} = \dfrac{{SN}}{{SC}} = \dfrac{2}{3}\left( { = \dfrac{{SG}}{{SH}}} \right)\).

    \(\dfrac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = \dfrac{{SM}}{{SB}}.\dfrac{{SN}}{{SC}} = \dfrac{2}{3}.\dfrac{2}{3} = \dfrac{4}{9}\)\( \Rightarrow {V_{S.AMN}} = \dfrac{4}{9}{V_{S.ABC}}\).

    Mà \({V_{S.AMN}} + {V_{AMNBC}} = {V_{S.ABC}} \Rightarrow {V_{AMNBC}} = \dfrac{5}{9}{V_{S.ABC}} = V\).

    Ta có \(\Delta ABC\) vuông cân tại \(B \Rightarrow AB = BC = \dfrac{{AC}}{{\sqrt 2 }} = a\)\( \Rightarrow {S_{\Delta ABC}} = \dfrac{1}{2}{a^2}\).

    \( \Rightarrow {V_{S.ABC}} = \dfrac{1}{3}SA.{S_{\Delta ABC}}\)\( = \dfrac{1}{3}a.\dfrac{1}{2}{a^2} = \dfrac{{{a^3}}}{6}\).

    Vậy \(V = \dfrac{5}{9}.\dfrac{{{a^3}}}{6} = \dfrac{{5{a^3}}}{{54}}\).

    Chọn A.

    ATNETWORK

Mã câu hỏi: 354035

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON