YOMEDIA
NONE
  • Câu hỏi:

    A và B là hai điểm thuộc hai nhánh khác nhau của đồ thị hàm số \(y = \frac{x}{{x - 2}}\). Khi đó độ dài đoạn AB ngắn nhất bằng

    • A. \(4\sqrt 2 \)
    • B. \(4\)
    • C. \(2\)
    • D. \(2\sqrt 2 \)

    Lời giải tham khảo:

    Đáp án đúng: B

    Hàm số \(y = \frac{x}{{x - 2}}\) có đồ thị (C) như hình vẽ. Gọi \(A\left( {a;\frac{a}{{a - 2}}} \right);B\left( {b;\frac{b}{{b - 2}}} \right)\) là 2 điểm thuộc 2 nhánh của (C) (a < 2 < b)

    Ta có: \(\overrightarrow {AB}  = \left( {b - a;\frac{b}{{b - 2}} - \frac{a}{{a - 2}}} \right) = \left( {b - a;\frac{{b - a}}{{\left( {b - 2} \right)\left( {a - 2} \right)}}} \right)\)

    Áp dụng BĐT Cô si ta có: \(\left( {b - 2} \right)\left( {a - 2} \right) \le \frac{{{{\left( {b - a} \right)}^2}}}{4}\)

    Suy ra \(A{B^2} = {\left( {b - a} \right)^2} + \frac{{{{\left( {b - a} \right)}^2}}}{{{{\left[ {\left( {b - 2} \right)\left( {a - 2} \right)} \right]}^2}}} \ge {\left( {b - a} \right)^2} + \frac{{64}}{{{{\left( {b - a} \right)}^2}}} \ge 16\)

    \( \Rightarrow AB \ge 4\). Dấu = xảy ra khi và chỉ khi \(a = 2 - \sqrt 2 ;b = 2 + \sqrt 2 \)

    Vậy \(AB_{min}=4\)

    ATNETWORK

Mã câu hỏi: 55611

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON