Bài giảng hướng dẫn các em cách tính thể tích của một khối nón bằng việc tìm bán kính đáy và chiều cao cùng một số bài tập liên quan
-
Video liên quan
-
Nội dung
-
Bài 1: Tìm khoảng đơn điệu của hàm số
Bài 1: Tìm khoảng đơn điệu của hàm số
Bài giảng sẽ giúp các em nắm được kiến thức cơ bản về cách tìm khoảng đơn điệu của hàm số như: Định nghĩa Điều kiện đủ để hàm số đơn điệu Các bước tìm khoảng đơn điệu của hàm số00:55:29 5168 TS. Phạm Sỹ Nam
-
Bài 2: Tìm tham số để hàm số đơn điệu trên một miền
Bài 2: Tìm tham số để hàm số đơn điệu trên một miền
Bài giảng sẽ giúp các em nắm được kiến thức cơ bản về cách tìm tham số để hàm số đơn điệu trên một miền như: Công thức tính. Điều kiện đủ để hàm số đơn điệu trên một miền.00:28:42 1080 TS. Phạm Sỹ Nam
-
Bài 3: Ứng dụng tính đơn điệu giải phương trình
Bài 3: Ứng dụng tính đơn điệu giải phương trình
Bài giảng sẽ giúp các em nắm kỹ hơn về lý thuyết và một số ví dụ cụ thể về ứng dụng tính đơn điệu giải phương trình.00:32:49 1080 TS. Phạm Sỹ Nam
-
Bài 4: Ứng dụng tính đơn điệu giải bất phương trình
Bài 4: Ứng dụng tính đơn điệu giải bất phương trình
Bài giảng Ứng dụng tính đơn điệu giải bất phương trình sẽ giúp các em nắm được lý thuyết và bài tập để các em củng cố kiến thức.00:32:29 870 TS. Phạm Sỹ Nam
-
Bài 5: Ứng dụng tính đơn điệu giải hệ phương trình
Bài 5: Ứng dụng tính đơn điệu giải hệ phương trình
Bài giảng Ứng dụng tính đơn điệu giải hệ phương trình sẽ giúp các em nắm kỹ hơn cách giải hệ phương trình, cách tìm tính nghịch biến, đồng biến về tính đơn điệu của hệ phương trình.00:29:14 946 TS. Phạm Sỹ Nam
-
Bài 6: Ứng dụng tính đơn điệu chứng minh bất đẳng thức
Bài 6: Ứng dụng tính đơn điệu chứng minh bất đẳng thức
Bài giảng ứng dụng tính đơn điệu chứng minh bất đẳng thức gồm có 2 phần nội dung chính: Lý thuyết Các ví dụ cụ thể nhằm giúp các em chứng minh được đồng biến và nghịch biến.00:43:58 1076 TS. Phạm Sỹ Nam
1. Lý thuyết:
\(V=\frac{1}{3}.\pi .R^{2}.h\)
\((=\frac{1}{3}.S_{day}.h)\)
R: bán kính hình tròn đáy
h: chiều cao ( khoảng cách từ đỉnh tới đáy)
2. Bài tập:
Ví dụ 1: Cho khối nón có độ dài đường sinh bằng 5cm, bán kính hình tròn đáy là 3cm. Tính thể tích khối nón.
\(\left\{\begin{matrix} l=5cm\\R=3cm \end{matrix}\right.\)
Giải:
Gọi O là đỉnh khối nón
H là tâm hình tròn
A là điểm thuộc đường tròn đáy
OA=5cm, HA=3cm
Trong tam giác vuông OHA,
\(OH=\sqrt{OA^{2}-HA^{2}}=\sqrt{5^{2}-3^{2}}=4\)
\(V=\frac{1}{3}\pi .R^{2}.h=\frac{1}{3}\pi .3^{2}.4=12\pi (cm^{3})\)
Ví dụ 2: Cho khối nón có góc ở đỉnh bằng \(60^{\circ}\) độ dài đường sinh bằng 6cm. Tính thể tích khối nón.
Giải:
Gọi O là đỉnh khối nón. Kẻ đường kính AB của hình tròn đáy tâm H.
Theo bài ra,
\(\widehat{AOB}=60^{\circ},\hspace{3}OA=OB=6(cm)\)
Suy ra, \(\Delta OAB\) đều nên AB=6cm
\(\Rightarrow R=HA=3(cm)\)
Trong tam giác vuông OHA, \(\widehat{AOH}=30^{\circ}\)
\(OH=OA.\cos30^{\circ}=6.\frac{\sqrt{3}}{2}=3\sqrt{3}(cm)\)
\(V=\frac{1}{3}.\pi .3^{2}.3\sqrt{3}=9\pi \sqrt{3}(cm^{3})\)
Chú ý: \(OH=\sqrt{OA^{2}-HA^{2}}=\sqrt{6^{2}-3^{2}}=3\sqrt{3}\) hoặc \(OH=HA.\cot30^{\circ}=3\sqrt{3}\)
Ví dụ 3: Cho \(\Delta ABC\) vuông tại A, AB=8(cm), BC=10(cm). Tính thể tích khối tròn xoay tạo thành khi cho đường gấp khúc
a) ACB quay quanh AB.
b) ABC quay quanh AC.
a) BAC quay quanh BC.
Giải:
Trong tam giác vuông ABC,
\(AC=\sqrt{BC^{2}-AB^{2}}=\sqrt{10^{2}-8^{2}}=6(cm)\)
a) Khi đường gấp khúc ACB quay quanh AB ta được hình nón có chiều cao h=AB=8(cm), bán kính R=AC=6(cm).
\(V=\frac{1}{3}.\pi .R^{2}.h=\frac{1}{3}.\pi .6^{2}.8=96\pi (cm^{3})\)
b) Khi đường gấp khúc ABC quay quanh AC ta được hình nón có chiều cao h=AC=6(cm), bán kính R=AB=8(cm).
\(V=\frac{1}{3}.\pi .R^{2}.h=\frac{1}{3}.\pi .8^{2}.6=128\pi (cm^{3})\)
c) Khi đường gấp khúc BAC quay quanh BC ta được 2 hình nón.
+ Hình nón thứ nhất tạo thành khi cho đường gấp khúc BAH quay quanh BH
R1=AH, h1=BH.
Trong tam giác vuông ABC:
\(\frac{1}{AH^{2}}=\frac{1}{AB^{2}}+\frac{1}{AC^{2}}=\frac{1}{8^{2}}+\frac{1}{6^{2}}=\frac{10^{2}}{8^{2}.6^{2}}\)
\(\Rightarrow R_{1}=AH=\frac{8.6}{10}=\frac{24}{5}\)
\(h_{1}=BH=\sqrt{AB^{2}-AH^{2}}=\sqrt{8^{2}-\frac{8^{2}.6^{2}}{10^{2}}}=8\sqrt{\frac{10^{2}-6^{2}}{10^{2}}}=\frac{8^{2}}{10}=\frac{32}{5}\)\(V_{1}=\frac{1}{3}.\pi .R_{1}^{2}.h_{1}=\frac{1}{3}.\pi .\frac{48^{2}}{10^{2}}.\frac{32}{5}=\frac{6144}{125}(cm^{3})\)
+ Hình nón thứ hai tọa thành khi cho đường gấp khúc HAC quay quanh HC.
\(\Rightarrow R_{1}=AH=\frac{24}{5}\)
\(h_{2}=HC=BC-HB=10-\frac{32}{5}=\frac{18}{5}\)
\(V_{2}=\frac{1}{3}.\pi .R_{2}^{2}.h_{2}=\frac{1}{3}.\pi .\frac{24^{2}}{5^{2}}.\frac{18}{5}=\frac{3456}{125}(cm^{3})\)
\(V=V_{1}+V_{2}=\frac{384}{5}(cm^{3})\)
Cách 2: \(V=V_{1}+V_{2}=\frac{1}{3}\pi R_{1}^{2}.h_{1}+\frac{1}{3}\pi R_{2}^{2}.h_{2}\)
\(=\frac{1}{3}\pi R_{1}^{2}.(h_{1}+h_{2})=\frac{1}{3}\pi .\frac{24^{2}}{5^{2}}(\frac{32}{5}+\frac{18}{5}) =\frac{1}{3}\pi .\frac{24^{2}}{5^{2}}.10\)
Nhận xét:
\(V=\frac{1}{3}\pi .AH^{2}.BC=\frac{1}{3}\pi .AH.\frac{AB^{2}.AC^{2}}{AB^{2}+AC^{2}}.BC\)