Bài giảng sẽ hướng dẫn các em cách tính khoảng cách giữa hai đường thẳng, khoảng cách từ đường thẳng và mặt phẳng song song, khoảng cách giữa hai đường thẳng chéo nhau cùng một số bài tập liên quan từ cơ bản đến nâng cao
-
Video liên quan
-
Nội dung
-
Bài 1: Tìm khoảng đơn điệu của hàm số
Bài 1: Tìm khoảng đơn điệu của hàm số
Bài giảng sẽ giúp các em nắm được kiến thức cơ bản về cách tìm khoảng đơn điệu của hàm số như: Định nghĩa Điều kiện đủ để hàm số đơn điệu Các bước tìm khoảng đơn điệu của hàm số00:55:29 5168 TS. Phạm Sỹ Nam
-
Bài 2: Tìm tham số để hàm số đơn điệu trên một miền
Bài 2: Tìm tham số để hàm số đơn điệu trên một miền
Bài giảng sẽ giúp các em nắm được kiến thức cơ bản về cách tìm tham số để hàm số đơn điệu trên một miền như: Công thức tính. Điều kiện đủ để hàm số đơn điệu trên một miền.00:28:42 1080 TS. Phạm Sỹ Nam
-
Bài 3: Ứng dụng tính đơn điệu giải phương trình
Bài 3: Ứng dụng tính đơn điệu giải phương trình
Bài giảng sẽ giúp các em nắm kỹ hơn về lý thuyết và một số ví dụ cụ thể về ứng dụng tính đơn điệu giải phương trình.00:32:49 1080 TS. Phạm Sỹ Nam
-
Bài 4: Ứng dụng tính đơn điệu giải bất phương trình
Bài 4: Ứng dụng tính đơn điệu giải bất phương trình
Bài giảng Ứng dụng tính đơn điệu giải bất phương trình sẽ giúp các em nắm được lý thuyết và bài tập để các em củng cố kiến thức.00:32:29 870 TS. Phạm Sỹ Nam
-
Bài 5: Ứng dụng tính đơn điệu giải hệ phương trình
Bài 5: Ứng dụng tính đơn điệu giải hệ phương trình
Bài giảng Ứng dụng tính đơn điệu giải hệ phương trình sẽ giúp các em nắm kỹ hơn cách giải hệ phương trình, cách tìm tính nghịch biến, đồng biến về tính đơn điệu của hệ phương trình.00:29:14 946 TS. Phạm Sỹ Nam
-
Bài 6: Ứng dụng tính đơn điệu chứng minh bất đẳng thức
Bài 6: Ứng dụng tính đơn điệu chứng minh bất đẳng thức
Bài giảng ứng dụng tính đơn điệu chứng minh bất đẳng thức gồm có 2 phần nội dung chính: Lý thuyết Các ví dụ cụ thể nhằm giúp các em chứng minh được đồng biến và nghịch biến.00:43:58 1076 TS. Phạm Sỹ Nam
I. Lý thuyết
1. Khoảng cách từ 1 điểm đến đường thẳng
Cho điểm M và đường thẳng \(\Delta\) đi qua N và có 1 VTCP \(\overrightarrow{u}\)
\(d(M;\Delta )=\frac{\left | \left [ \overrightarrow{NM};\overrightarrow{u} \right ] \right |}{\left | \overrightarrow{u} \right |}\)
\(\left ( =\frac{2S_{\Delta MNP}}{NP} \right )\)
2) Khoảng cách từ giữa đường thẳng và mặt phẳng song song
Cho đường thẳng \(\Delta\) và mặt phẳng (P), \(\Delta\) // (P) Ax+By+Cz+D=0, M(x0;y0;z0)
\(d(\Delta;(P))=d(M;(P)) \ \ M \in \Delta\)
\(=\frac{\left | Ax+By+Cz+D \right |}{\sqrt{A^2+B^2+C^2}}\)
3) Khoảng cách giữa hai đường thẳng chéo nhau
Cách 1:
\(\Delta _1\) đi qua M1. có 1 VTCP \(\overrightarrow{u_1}\)
\(\Delta _2\) đi qua M2. có 1 VTCP \(\overrightarrow{u_2}\)
\(d(\Delta _1;\Delta _2)=\frac{\left | [\overrightarrow{u_1};\overrightarrow{u_2}] .\overrightarrow{M_1M_2}\right |}{[\overrightarrow{u_1};\overrightarrow{u_2}]}\)
Cách 2:
AB là đoạn vuông góc chung \(\Delta _1\), \(\Delta _2\)
\(A\in \Delta _1, B\in \Delta _2\)
\(\Leftrightarrow \left\{\begin{matrix} \overrightarrow{AB}.\overrightarrow{u_1}=0\\ \overrightarrow{AB}.\overrightarrow{u_2}=0 \end{matrix}\right.\)
\(d(\Delta _1;\Delta _2)=AB\)
II. Bài tập
VD1: Cho điểm M(1;2;3) và \(\Delta :\frac{x-1}{2}=\frac{y}{2}=\frac{z+1}{1}\). Tính \(d(M;\Delta )\)
Giải
\(\Delta\) đi qua N(1;0;-1) và có 1 VTCP \(\overrightarrow{u}=(2;2;1)\)
\(d(M;\Delta )=\frac{\left | [\overrightarrow{NM};\overrightarrow{u}] \right |}{ \left | \overrightarrow{u} \right |}\)
\(\left.\begin{matrix} \overrightarrow{NM}=(0;2;4)\\ \overrightarrow{u}=(2;2;1) \end{matrix}\right\}\)
\([\overrightarrow{NM};\overrightarrow{u}] = \left ( \begin{vmatrix} 2 \ \ 4 \\ 2 \ \ 1 \end{vmatrix}; \begin{vmatrix} 4 \ \ 0 \\ 1 \ \ 2 \end{vmatrix}; \begin{vmatrix} 0 \ \ 2 \\ 2 \ \ 2 \end{vmatrix} \right )=(-6;8;-4)\)
\(d(M;\Delta )=\frac{\left | [\overrightarrow{NM};\overrightarrow{u}] \right |}{ \left | \overrightarrow{u} \right |}= \frac{\sqrt{(-6)^2+8^2+(-4)^2}}{\sqrt{2^2+2^2+1^2}}=\frac{\sqrt{116}}{3} =\frac{2.\sqrt{29}}{3}\)
Cách 2:
\(H\in \Delta \Rightarrow H(1+2t;2t;-1+t)\)
\(\overrightarrow{MH}=(2t;2t-2;-4+t)\)
H là hình chiếu M trên \(\Delta\) nên
\(\overrightarrow{MH}.\overrightarrow{u}=0\Leftrightarrow 4t+2(2t-2)-4+t=0\)
\(\Leftrightarrow 9t=8\Leftrightarrow t=\frac{8}{9}\)
\(\overrightarrow{MH}=(\frac{16}{9};-\frac{2}{9};-\frac{28}{9})\)
\(d(M;\Delta )=MH=\frac{\sqrt{16^2+(-2)^2+(-28)^2}}{9}=\frac{2\sqrt{29}}{3}\)
Nhận xét:
1) Tìm \(H\in \Delta\) sao cho MHmin
VD2: Tìm tọa độ điểm N thuộc đường thẳng \(\Delta: \frac{x}{2}=\frac{y}{3}=\frac{z-1}{1}\) và cách d \(\left\{\begin{matrix} x=-1-t\\ y=3+2t\\ z=4+3t \end{matrix}\right.\) một khoảng bằng \(\frac{13\sqrt{42}}{14}\).
Giải
\(N\in \Delta \Rightarrow N(2t;3t;1+t)\)
d đi qua M(-1;3;4), có 1 VTCP \(\overrightarrow{u}=(-1;2;3)\)
\(\overrightarrow{MN}=(2t+1;3t-3;t-3)\)
\(\overrightarrow{u}=(-1;2;3)\)
\(\left [ \overrightarrow{MN};\overrightarrow{u} \right ]= \left ( \begin{vmatrix} 3t-3 \ \ t-3\\ 2 \ \ \ \ \ \ \ \ \ 3 \end{vmatrix}; \begin{vmatrix} t-3 \ \ 2t+1\\ 3 \ \ \ \ \ \ \ \ \ -1 \end{vmatrix}; \begin{vmatrix} 2t+1 \ \3t-3\\ -1 \ \ \ \ \ \ \ \ \ 2 \end{vmatrix} \right )\)
\(= (7t-3;-7t;7t-1)\)
\(d(N;d)=\frac{\left | [\overrightarrow{MN};\overrightarrow{u}] \right |}{\left | \overrightarrow{u} \right |}=\frac{\sqrt{(7t-3)^2+(-7t)^2+(7t-1)^2}}{\sqrt{(-1)^2+2^2+3^2}}\)
\(=\frac{\sqrt{147t^2-56t+10}}{\sqrt{14}}\)
\(d(N;d)=\frac{13\sqrt{42}}{14}\)
\(\Leftrightarrow \frac{147t^2-56t+10}{14}=\frac{169.42}{14^2}\)
\(\Leftrightarrow 147t^2-56t-497=0\)
\(\Leftrightarrow \Bigg \lbrack\begin{matrix} t=\frac{28-\sqrt{73843}}{147}\\ \\ t=\frac{28+\sqrt{73843}}{147} \end{matrix}\)
\(\Rightarrow N\left ( \frac{56\mp 2\sqrt{73843}}{147}; \frac{84\mp 3\sqrt{73843}}{147} ; \frac{175\mp 2\sqrt{73843}}{147} \right )\)
VD3: Cho đường thẳng \(\Delta \frac{x+1}{-1}=\frac{y-2}{2}=\frac{z}{3}\) và \((P):2x+y+mz-1=0\)
a) Tìm m để \(\Delta //(P)\)
b) Tính \(d(\Delta ;(P))\)
Giải
\(\Delta\) đi qua M(-1;2;0), có 1 VTCP \(\overrightarrow{u}=(-1;2;3)\)
(P) có 1 VTPT \(\overrightarrow{n_P}=(2;1;m)\)
a)
\(\Delta\) // (P) \(\Leftrightarrow\left\{\begin{matrix} M\notin (P)\\ \overrightarrow{u}.\overrightarrow{n_P}=0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2+2+0-1\neq 0\\ -2+2+3m=0 \end{matrix}\right.\Leftrightarrow m=0\)
b)
Với m = 0
\((P): 2x+y-1=0\)
\(d(\Delta ;(P))=d(M;(P))=\frac{\left | -2+2-1 \right |}{\sqrt{2^2+1^2}}=\frac{1}{\sqrt{5}}\)
VD4: Cho \((d_1)\left\{\begin{matrix} x=1+2t\\ y=2+t\\ z=-3+3t \end{matrix}\right.(d_2)\left\{\begin{matrix} x=2+u\\ y=-3+2u\\ z=1+3u \end{matrix}\right.\)
a) CMR: d1, d2 chéo nhau
b) Tính d(d1;d2)
Giải
a)
d1 đi qua M1(1;2;-3), có 1 VTCP \(\overrightarrow{u_1}=(2;1;3)\)
d2 đi qua M2(2;-3;1), có 1 VTCP \(\overrightarrow{u_2}=(1;2;3)\)
\(\left [ \overrightarrow{u_1};\overrightarrow{u_2} \right ]= \left ( \begin{vmatrix} 1 \ \ 3\\ 2 \ \ 3 \end{vmatrix};\begin{vmatrix} 3 \ \ 2\\ 3 \ \ 1 \end{vmatrix};\begin{vmatrix} 2 \ \ 1\\ 1 \ \ 2 \end{vmatrix} \right )=(-3;-3;3)\)
\(\overrightarrow{M_1M_2}=(1;-5;4)\)
\(\left [ \overrightarrow{u_1};\overrightarrow{u_2} \right ].\overrightarrow{M_1M_2}= -3.1+(-3)(-5)+3.4=24\neq 0\)
Vậy d1, d2 chéo nhau
b)
Cách 1:
\(d(d_1;d_2)=\frac{\left | [\overrightarrow{u_1};\overrightarrow{u_2}.\overrightarrow{M_1M_2 }] \right |}{\left | \overrightarrow{u_1};\overrightarrow{u_2} \right |}= \frac{24}{\sqrt{(-3)^2+(-3)^2+3^2}}=\frac{24}{3\sqrt{3}}=\frac{8}{\sqrt{3}}\)
\(=\frac{8\sqrt{3}}{3}\)
Cách 2:
\(A(1+2t;2+t;-3+3t)\in d_1\)
\(B(2+u;-3+2u;1+3u)\in d_2\)
AB là đoạn vuông góc chung
\(\Leftrightarrow \left\{\begin{matrix} \overrightarrow{AB}.\overrightarrow{u_1}=0\\ \overrightarrow{AB}.\overrightarrow{u_2}=0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} t\\ u \end{matrix}\right.\)
AB = d(d1;d2)