YOMEDIA

Giải Toán 10 SGK nâng cao Chương 3 Bài 1 Đại cương về phương trình

 
NONE

Dưới đây là Hướng dẫn giải bài tập Toán 10 nâng cao Chương 3 Bài 1 Đại cương về phương trình được hoc247 biên soạn và tổng hợp, nội dung bám sát theo chương trình SGK Đại số 10 nâng cao giúp các em học sinh nắm vững phương pháp giải bài tập và ôn tập kiến thức hiệu quả hơn. 

ATNETWORK

Bài 1 trang 71 SGK Toán 10 nâng cao

Tìm điều kiện xác định của mỗi phương trình sau rồi suy ra tập nghiệm của nó.

a) \(\sqrt x  = \sqrt { - x} \)

b) \(3x - \sqrt {x - 2}  = \sqrt {2 - x}  + 6\)

c) \(\frac{{\sqrt {3 - x} }}{{x - 3}} = x + \sqrt {x - 3} \)

d) \(x + \sqrt {x - 1}  = \sqrt { - x} \)

Hướng dẫn giải:

Câu a:

Điều kiện xác định 

\(\left\{ \begin{array}{l}
x \ge 0\\
 - x \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
x \le 0
\end{array} \right. \Leftrightarrow x = 0\)

Thay x = 0 vào phương trình ta thấy thỏa mãn

Vậy tập nghiệm của phương trình là S = {0}

Câu b:

Điều kiện xác định 

\(\left\{ \begin{array}{l}
x - 2 \ge 0\\
2 - x \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge 2\\
x \le 2
\end{array} \right. \Leftrightarrow x = 2\)

Ta có x = 2 thỏa mãn phương trình nên S = {2}

Câu c:

Điều kiện xác định

\(\left\{ \begin{array}{l}
x - 3 \ge 0\\
3 - x \ge 0\\
x - 3 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge 3\\
x \le 3\\
x \ne 3
\end{array} \right.\) (vô nghiệm)

Vậy \(S = \emptyset \)

Câu d:

Điều kiện xác định

\(\left\{ \begin{array}{l}
x \ge 1\\
x \le 0
\end{array} \right.\) (vô nghiệm)

Vậy \(S = \emptyset \)


Bài 2 trang 71 SGK Toán 10 nâng cao

Giải các phương trình sau:

a) \(x + \sqrt {x - 1}  = 2 + \sqrt {x - 1} \)

b) \(x + \sqrt {x - 1}  = 0,5 + \sqrt {x - 1} \)

c) \(\frac{x}{{2\sqrt {x - 5} }} = \frac{3}{{\sqrt {x - 5} }}\)

d) \(\frac{x}{{2\sqrt {x - 5} }} = \frac{2}{{\sqrt {x - 5} }}\)

Hướng dẫn giải:

Câu a:

ĐKXĐ: \(x \ge 1\)

\(x + \sqrt {x - 1}  = 2 + \sqrt {x - 1}  \Leftrightarrow x = 2\) (thỏa ĐKXĐ)

Vậy S = {2}

Câu b:

ĐKXĐ: \(x \ge 1\)

Ta có \(x + \sqrt {x - 1}  = 0,5 + \sqrt {x - 1}  \Leftrightarrow x = 0,5\) (không thỏa ĐKXĐ)

Vậy \(S = \emptyset \)

Câu c: 

ĐKXĐ: x > 5

Ta có \(\frac{x}{{2\sqrt {x - 5} }} = \frac{3}{{\sqrt {x - 5} }} \Leftrightarrow \frac{x}{2} = 3 \Leftrightarrow x = 6\) (nhận)

Vậy S = {6}

Câu d:

ĐKXĐ: x > 5

Ta có \(\frac{x}{{2\sqrt {x - 5} }} = \frac{2}{{\sqrt {x - 5} }} \Leftrightarrow \frac{x}{2} = 2 \Leftrightarrow x = 4\) (loại)

Vậy \(S = \emptyset \)


Bài 3 trang 71 SGK Toán 10 nâng cao

Giải các phương trình sau:

a) \(x + \frac{1}{{x - 1}} = \frac{{2x - 1}}{{x - 1}}\)

b) \(x + \frac{1}{{x - 2}} = \frac{{2x - 3}}{{x - 2}}\)

c) \(\left( {{x^2} - 3x + 2} \right)\sqrt {x - 3}  = 0\)

d) \(\left( {{x^2} - x - 2} \right)\sqrt {x + 1}  = 0\)

Hướng dẫn giải:

Câu a:

ĐKXĐ: \(x \ne 1\)

Ta có 

\(\begin{array}{*{20}{l}}
\begin{array}{l}
x + \frac{1}{{x - 1}} = \frac{{2x - 1}}{{x - 1}}\\
 \Rightarrow x\left( {x - 1} \right) + 1 = 2x - 1
\end{array}\\
{ \Leftrightarrow {x^2} - 3x + 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x = 1{\mkern 1mu} {\mkern 1mu} \left( l \right)}\\
{x = 2{\mkern 1mu} {\mkern 1mu} \left( n \right)}
\end{array}} \right.}
\end{array}\)

Vậy S = {2}

Câu b: 

ĐKXĐ: \(x \ne 2\)

\(\begin{array}{l}
x + \frac{1}{{x - 2}} = \frac{{2x - 3}}{{x - 2}}\\
 \Rightarrow {x^2} - 4x + 4 = 0\\
 \Leftrightarrow {\left( {x - 2} \right)^2} = 0 \Leftrightarrow x = 2\,\,\left( l \right)
\end{array}\)

Vậy \(S = \emptyset \)

Câu c:

ĐKXĐ: \(x \ge 3\)

Ta có 

\(\begin{array}{l}
\left( {{x^2} - 3x + 2} \right)\sqrt {x - 3}  = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
\sqrt {x - 3}  = 0\\
{x^2} - 3x + 2 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 3\,\,\left( n \right)\\
x = 1\,\,\left( l \right)\\
x = 2\,\,\left( l \right)
\end{array} \right.
\end{array}\)

Vậy S = {3}

Câu d:

ĐKXĐ: \(x \ge -1\)

Ta có \(\left( {{x^2} - x - 2} \right)\sqrt {x + 1}  = 0 \Leftrightarrow \left[ \begin{array}{l}
\sqrt {x + 1}  = 0\\
{x^2} - x - 2 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x =  - 1\\
x = 2
\end{array} \right.\,\,\left( n \right)\)

Vậy S = {- 1;2}


Bài 4 trang 71 SGK Toán 10 nâng cao

Giải các phương trình sau bằng cách bình phương hai vế của phương trình.

a) \(\sqrt {x - 3}  = \sqrt {9 - 2x} \)

b) \(\sqrt {x - 1}  = x - 3\)

c) \(2\left| {x - 1} \right| = x + 2\)

d) \(\left| {x - 2} \right| = 2x - 1\)

Hướng dẫn giải:

Câu a:

Ta có \(\sqrt {x - 3}  = \sqrt {9 - 2x}  \Rightarrow x - 3 = 9 - 2x\) 

\( \Leftrightarrow 3x = 12 \Leftrightarrow x = 4\)

Thử lại x = 4 nghiệm đúng phương trình

Vậy S = {4}

Câu b:

Ta có \(\sqrt {x - 1}  = x - 3 \Rightarrow x - 1 = {\left( {x - 3} \right)^2}\)

\( \Leftrightarrow {x^2} - 7x + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 2\\
x = 5
\end{array} \right.\)

Thử lại x = 2 không thỏa mãn, x = 5 thỏa mãn phương trình 

Vậy S = {5}

Câu c: 

Ta có \(2\left| {x - 1} \right| = x + 2 \Rightarrow 4{\left( {x - 1} \right)^2} = {\left( {x + 2} \right)^2}\)

\(\begin{array}{l}
 \Leftrightarrow 4{x^2} - 8x + 4 = {x^2} + 4x + 4\\
 \Leftrightarrow 3{x^2} - 12x = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 4
\end{array} \right.
\end{array}\)

Thử lại x = 0, x = 4 đều nghiệm đúng

Vậy S = {0;4}

Câu d: 

Ta có \(\left| {x - 2} \right| = 2x - 1 \Rightarrow {\left( {x - 2} \right)^2} = {\left( {2x - 1} \right)^2}\)

\(\begin{array}{l}
 \Leftrightarrow {x^2} - 4x + 4 = 4{x^2} - 4x + 1\\
 \Leftrightarrow 3{x^2} = 3 \Leftrightarrow x =  \pm 1
\end{array}\)

Thử lại chỉ có x = 1 nghiệm đúng

Vậy S = {1}

 

Trên đây là nội dung chi tiết Giải bài tập nâng cao Toán 10 Chương 3 Bài 1 Đại cương về phương trình với hướng dẫn giải chi tiết, rõ ràng, trình bày khoa học. Hoc247 hy vọng đây sẽ là tài liệu hữu ích giúp các bạn học sinh lớp 10 học tập thật tốt. 

 

NONE

ERROR:connection to 10.20.1.101:9312 failed (errno=111, msg=Connection refused)
ERROR:connection to 10.20.1.101:9312 failed (errno=111, msg=Connection refused)
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON