Nhằm giúp các em tham khảo, đối chiếu đáp án sau bài thi Tốt nghiệp THPT Quốc gia môn Toán năm 2022, HOC247 xin gửi đến các em Đề và đáp án đề thi tốt nghiệp THPT môn Toán năm 2022- Mã đề 105. Hi vọng với nội dung tài liệu này có thể giúp các em đánh giá được kết quả làm bài và năng lực của mình. Chúc các em đạt được kết quả thật cao trong kì thi quan trong này nhé.
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHÍNH THỨC |
KỲ THI TỐT NGHIỆP THPT NĂM 2022 MÔN TOÁN Thời gian làm bài: 90 phút (Không kể thời gian phát đề) |
Mã đề: 105
Câu 1: Nếu \(\int\limits_{0}^{3}{f(x)d}x=6\) thì \(\int\limits_{0}^{3}{\left[ \frac{1}{3}f(x)+2 \right]d}x\) bằng
A. 5
B. 8
C. 6
D. 9
Câu 2: Cho hàm số y = f(x) có bảng biến thiên như sau:
Số giao điểm của đồ thị hàm số đã cho và đường thẳng y = 1 là
A. 2
B. 1
C. 0
D. 3
Câu 3: Hàm số nào dưới đây có bảng biến thiên như sau:
A. y = x3 – 3x
B. y = x2 – 2x
C. y = -x2 + 2x
D. y = - x3 + 3x
Câu 4: Hàm số F(x) = cotx là một nguyên hàm của hàm số nào dưới đâu trên khoảng \(\left( 0;\frac{\pi }{2} \right)\)?
A. \({{f}_{3}}\left( x \right)=-\frac{1}{{{\sin }^{2}}x}\)
B. \({{f}_{4}}\left( x \right)=\frac{1}{co{{s}^{2}}x}\)
C. \({{f}_{2}}\left( x \right)=\frac{1}{{{\sin }^{2}}x}\)
D. \({{f}_{1}}\left( x \right)=-\frac{1}{co{{s}^{2}}x}\)
Câu 5: Cho hàm số y = f(x) có bảng biến thiên như sau:
Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng có phgương trình:
A. x = -1
B. x = -2
C. y = -2
D. y = -1
Câu 6: Phần áo của số phức z = (2 - i)(1 + i) bằng
A. 3
B. -1
C. -3
D. 1
Câu 7: Cho khối chóp S.ABC có chiều cao bằng 5, đáy ABC có diện tích bằng 6. Thể tích khối chóp. S.ABC bằng
A. 15
B. 10
C. 11
D. 30
Câu 8: Số nghiệm thực của phương trình \({{2}^{{{x}^{2}}+1}}=4\) là:
A. 3
B. 2
C. 1
D. 0
Câu 9: Trong không gian Oxyz, cho mặt cầu (S): \({{\left( x-2 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=4\). Tâm của (S) có toạ độ là
A. (2; -1; 3)
B. (-2; 1; -3)
C. (4; -2; 6)
D. (-4; 2; -6)
Câu 10: Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị hàm số đã cho có toạ độ là:
A. (1; -1)
B. (1; 3)
C. (-1; -1)
D. (3; -1)
Câu 11: Trong không gian Oxyz, cho hai vectơ \(\overrightarrow{u}=\left( 1;-4;0 \right)\) và \(\overrightarrow{v}=\left( -1;-2;1 \right)\). Vectơ \(\overrightarrow{u}+3\overrightarrow{v}\) có toạ độ là:
A. (-2; -6; 3)
B. (-2; -10; 3)
C. (-2; -10; -3)
D. (-4; -8; 4)
Câu 12: Tập xác định của hàm số \(y={{\log }_{2}}\left( x-1 \right)\) là:
A. \(\left( -\infty ;+\infty \right)\)
B. \(\left( 2;+\infty \right)\)
C. \(\left( 1;+\infty \right)\)
D. \(\left( -\infty ;1 \right)\)
Câu 13: Cho cấp số nhân (un) với u1 = 3 và công bội q = 2. Số hạng tổng quát \({{u}_{n}}\left( n\ge 2 \right)\) bằng
A. 3.2n
B. 3.2n+2
C. 3.2n-1
D. 3.2n+1
Câu 14: Cho khối chóp và khối lăng trụ có diện tích đáy, chiều cao tương ứng bằng nhau và có thể tích lần lượt là V1, V2. Tỉ số \(\frac{{{V}_{1}}}{{{V}_{2}}}\) bằng
A. \(\frac{3}{2}\)
B. \(\frac{1}{3}\)
C. \(\frac{2}{3}\)
D. 3
Câu 15: Nghiệm của phương trình \({{\log }_{\frac{1}{2}}}\left( 2\text{x}-1 \right)=0\) là
A. \(x=\frac{3}{2}\)
B. x = 1
C. \(x=\frac{3}{4}\)
D. \(x=\frac{1}{2}\)
Câu 16: Với a là số thực dương tuỳ ý, log(100a) bằng
A. 1- loga
B. 2- loga
C. 2 + loga
D. 1+ loga
Câu 17: Từ các chữ số 1, 2, 3 4, 5 lập được bao nh số tự nhiên gồm năm chữ số đôi một klhác nhau?
A. 1
B. 120
C. 3125
D. 5
Câu 18: Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 2 + 7i có tọa độ là.
A. (2; -7)
B. (7; 2)
C. (-2; -7)
D. (2; 7)
Câu 19: Số phức nào dưới đây có phần ảo bằng phần ảo của số phức w = 1 - 4i?
A. z3 = 1 – 5i
B. z1 = 5 – 4i
C. z4 = 1 + 4i
D. z2 = 3 +4i
Câu 20: Cho \(a={{3}^{\sqrt{5}}},b={{3}^{2}}\) và \(c={{3}^{\sqrt{6}}}\). Mệnh đề nào dưới đây đúng?
A. b < a < c
B. a < b < c
C. a < c < b
D. c < a < b
Câu 21: Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong hình bên. Giá trị cực tiểu của hàm số đã cho bằng
A. 4
B. 1
C. 3
D. -1
Câu 22: Cho điểm M nằm ngoài mặt cầu S(O;R). Khẳng định nào dưới đây đúng?
A. OM < R
B. OM = R
C. \(OM\le R\)
D. OM > R
Câu 23: Khẳng định nào dưới đây đúng?
A. \(\int{{{e}^{x}}dx=x{{e}^{x}}}+c\)
B. \(\int{{{e}^{x}}dx=-{{e}^{x+1}}}+c\)
C. \(\int{{{e}^{x}}dx={{e}^{x}}}+c\)
D. \(\int{{{e}^{x}}dx={{e}^{x+1}}}+c\)
Câu 24: Trong không gian Oxyz, cho đường thẳng \(d:\frac{x-2}{1}=\frac{y-1}{-2}=\frac{z+1}{3}\) Điểm nào dưới đây thuộc d?
A. M(1, 2; 3),
B. O(2; 1; 1)
C. N(1; - 2; 3)
D. P(2; 1; -1)
Câu 25: Cho khối nón có diện tích đáy \(3{{a}^{2}}\) và chiều cao 2a. Thể tích của khối nón đã cho bằng
A. \(6{{a}^{3}}\)
B. \(\frac{2}{3}{{a}^{3}}\)
C. \(2{{a}^{3}}\)
D. \(3{{a}^{3}}\)
Câu 26: Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là:
A. y = 0
B. x = 0
C. y = 0
D. x + y = 0
Câu 27: Nếu \(\int\limits_{-1}^{2}{f(x)dx}=2\) và \(\int\limits_{2}^{5}{f(x)dx}=-5\) thì \(\int\limits_{-1}^{5}{f(x)dx}\) bằng
A. -7
B. 4
C. -3
D. 7
Câu 28: Cho hàm số y = f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
A. (O; +oo)
B. (-1; 0)
C. (0;3)
D. (-oo; -1)
Câu 29: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 3 (tham khảo hình bên). Khoảng cách từ B đến mặt phẳng (ACC'A') bằng
A. 3/2
B. 3
C. \(\frac{3\sqrt{2}}{2}\)
D. \(3\sqrt{2}\)
Câu 30: Với a, b là các số thực dương tùy ý ý và \(a\ne 1,{{\log }_{\frac{1}{a}}}\frac{1}{{{b}^{3}}}\) bằng
A. \({{\log }_{a}}b\)
B. \(-3{{\log }_{a}}b\)
C. \(\frac{1}{3}{{\log }_{a}}b\)
D. \(3{{\log }_{a}}b\)
Câu 31: Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)=x+1\) với mọi \(x\in R\). Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (\(- \infty \); 1)
B. (\(- \infty \); -1)
C. (1;\(+ \infty \))
D. (-1;\(+ \infty \))
Câu 32: Gọi z1, z2 là hai nghiệm phức của chương trình \({{z}^{2}}-2z+5=0\). Khi đó \(z_{1}^{2}+z_{2}^{2}\) bằng
A. 8i
B. 6
C. -8i
D. -6
Câu 33: Cho hàm số \(f\left( x \right)=1+{{e}^{2x}}\). Khẳng định nào dưới đây đúng?
A. \(\int{f\left( x \right)dx=}x+\frac{1}{2}{{e}^{2x}}+C\)
B. \(\int{f\left( x \right)dx=}x+\frac{1}{2}{{e}^{x}}+C\)
C. \(\int{f\left( x \right)dx=}x+2{{e}^{2x}}+C\)
D. \(\int{f\left( x \right)dx=}x+{{e}^{2x}}+C\)
Câu 34: Trong không gian Oxyz, cho điểm M(2; -2; 1) và mặt phẳng \((P):2x-3y-z+1=0\). Đường thẳng đi qua M và vuông góc với (P) có phương trình là:
A. \(\left\{ \begin{array}{l}
x = 2 + 2t\\
y = - 3 - 2t\\
z = - 1 + t
\end{array} \right.\)
B. \(\left\{ \begin{array}{l}
x = 2 + 2t\\
y = - 2 - 3t\\
z = 1 - t
\end{array} \right.\)
C. \(\left\{ \begin{array}{l}
x = 2 + 2t\\
y = - 2 + 3t\\
z = 1 + t
\end{array} \right.\)
D. \(\left\{ \begin{array}{l}
x = 2 + 2t\\
y = 2 - 3t\\
z = 1 - t
\end{array} \right.\)
Câu 35: Cho hình lập phương ABCD.A'B'C'D' (tham khảo hình bên). Gía trị sin của góc giữa đường thẳng AC' và mặt phẳng (ABCD) bằng
A. \(\frac{\sqrt{3}}{3}\)
B. \(\frac{\sqrt{2}}{2}\)
C. \(\frac{\sqrt{3}}{2}\)
D. \(\frac{\sqrt{6}}{3}\)
Câu 36: Trong không gian Oxyz, cho điểm A(1; 2; 3). Phương trình của mặt cầu tâm A và tiếp xúc với mặt phẳng x - 2y + 2z + 3 = 0 là:
A. (x + 1)2 + (y + 2)2 + (z + 3)2 = 4
B. (x + 1)2 + (y + 2)2 + (z + 3)2 = 2
C. (x - 1)2 + (y - 2)2 + (z - 3)2 = 2
D. (x - 1)2 + (y - 2)2 + (z - 3)2 = 4
Câu 37: Cho hàm số f(x) = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị nguyên thuộc đoạn [-2;5] của tham số m để phương trình f(x) = m có 2 nghiệm thực phân biệt?
A. 7
B. 6
C. 1
D. 5
Câu 38: Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [30;50]. Xác suất để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục bằng
A. \(\frac{11}{21}\)
B. \(\frac{8}{21}\)
C. \(\frac{13}{21}\)
D. \(\frac{10}{21}\)
Câu 39: Có bao nhiêu số nguyên dương a sao cho ứng với mỗi a có đúng hai số nguyên b thảo mãn (4b - 1)(a.3b - 10) < 0?
A. 182
B. 179
C. 180
D. 181
Câu 40: Cho hàm số f(x) = ax4 + 2(a + 4)x2 – 1 với a là tham số thực. Nếu \(\underset{\left[ 0;2 \right]}{\mathop{\max }}\,f\left( x \right)=f\left( 1 \right)\) thì \(\underset{\left[ 0;2 \right]}{\mathop{\min }}\,f\left( x \right)\) bằng
A. -17
B. -16
C. -1
D. 3
Câu 41: Biết F(x) và G(x) là hai nguyên hàm của hàm số f(x) trên R và \(\int\limits_{0}^{4}{f\left( x \right)dx=F(4)-G(0)+a}\) (a > 0). Gọi S là diện tích hình phẳng giới hạn bởi các đường y = F(x) y = G(x) x = 0 và x = 4. Khi S = 8 thì a bằng
A. 8.
B. 4.
C. 12.
D. 2
Câu 42: Cho các số phức \({{Z}_{1}},{{Z}_{2}},{{Z}_{3}}\) thỏa mãn \(2\left| {{Z}_{1}} \right|=2\left| {{Z}_{2}} \right|=\left| {{Z}_{3}} \right|=2\) và \(\left( {{Z}_{1}}+{{Z}_{2}} \right){{Z}_{3}}=3{{Z}_{1}}{{Z}_{2}}\) Gọi A, B, C lần lượt là các điểm biểu diễn của \({{Z}_{1}},{{Z}_{2}},{{Z}_{3}}\) trên mặt phẳng tọa độ. Diện tích tam giác ABC bằng
A. \(\frac{5\sqrt{7}}{8}\).
B. \(\frac{5\sqrt{7}}{24}\).
C. \(\frac{5\sqrt{7}}{16}\).
D. \(\frac{5\sqrt{7}}{32}\)
Câu 43: Cho hàm số bậc bốn y = f(x) Biết rằng hàm số \[g(x)=\ln (f(x))\]có bảng biển thiên như sau:
Diện tích hình phẳng giới hạn bởi các đường \(y=f'\left( x \right)\) và \(y=g'\left( x \right)\) thuộc khoảng nào dưới đây?
A. (24; 26).
B. (29; 32).
C. (37; 40)
D. (33; 35).
Câu 44: Xét tất cả các số thực x, y sao cho \({{25}^{5-{{y}^{2}}}}\ge {{a}^{6x-{{\log }_{3}}}}^{{{a}^{3}}}\) với mọi số thực dương a. Giá trị nhỏ nhất của biểu thức \(P={{x}^{2}}+{{y}^{2}}-4x+8y\) bằng
A. -5
B. -20
C. -15
D. 25
Câu 45: Có bao nhiêu số phức z thỏa mãn \(\left| {{Z}^{2}} \right|=\left| Z-\overline{Z} \right|\) và \(\left| \left( Z-2 \right)\left( \overline{Z}-2i \right) \right|={{\left| Z+2i \right|}^{2}}\)?
A. 3
B. 2
C. 1.
D. 4
Câu 46: Cho hình nón có góc ở đỉnh bằng 120° và chiều cao bằng 3. Gọi (S) là mặt cầu đi qua đỉnh chứa đường tròn đáy của hình nón đã cho. Diện tích của (S) bằng
A. 108π
B. 96π
C. 144π.
D. 48π
Câu 47: Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, cạnh bên \(\text{AA}'=2a\), góc giữa hai mặt phẳng \(\left( \text{A}'BC \right)\) và (ABC) bằng 30%. Thể tích của khối lăng trụ đã cho bằng
A. \(\frac{8}{3}{{a}^{3}}\).
B. \(\frac{8}{9}{{a}^{3}}\).
C. \(24{{a}^{3}}\).
D. \(8{{a}^{3}}\)
Câu 48: Trong không gian Oxyz, cho điểm A(1; 2; 2) Gọi (P) là mặt phẳng chứa trục Ox sao cho khoảng cách từ A đến (P) lớn nhất. Phương trình của (P) là
A. 2y + z = 0
B. y - z = 0
C. 2 y - z = 0
D. y + z = 0
Câu 49: Có bao nhiều giá trị nguyên âm của tham số a để hàm số \(y=\left| {{x}^{4}}+a{{x}^{2}}-8x \right|\) có đúng ba điểm cực trị?
A. 6.
B. 10.
C. 11.
D. 5.
Câu 50: Trong không gian Oxyz, cho mặt cầu (S) tâm I (9; 3; 1) bán kính bằng 3. Gọi M, N là bài điểm lần lượt thuộc hai trục Ox, Oz sao cho đường thẳng MN tiếp xúc với (S), đồng thời mặt cầu ngoại tiếp tứ diện OIMN có bán kinh bằng \(\frac{13}{2}\). Gọi A là tiếp điểm của MN và (S), giá trị AM.AN bằng
A. \(12\sqrt{3}\).
B. 18
C. \(28\sqrt{3}\).
D. 39
ĐÁP ÁN
1.B |
2.D |
3.D |
4.A |
5.B |
6.D |
7.B |
8.B |
9.A |
10.C |
11.B |
12.C |
13.C |
14.B |
15.B |
16.C |
17.B |
18.D |
19.B |
20.A |
21.C |
22.D |
23.C |
24.D |
25.C |
26.C |
27.C |
28.B |
29.C |
30.D |
31.B |
32.D |
33.A |
34.B |
35.A |
36.D |
37.A |
38.A |
39.D |
40.A |
41.D |
42.C |
43.D |
44.C |
45.D |
46.C |
47.C |
48.D |
49.A |
50.A |
Trên đây là toàn bộ nội dung Đề và đáp án đề thi tốt nghiệp THPT môn Toán năm 2022- Mã đề 105. Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang Hoc247.net để tải tài liệu về máy tính.
Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.
Các em quan tâm có thể tham khảo thêm các tài liệu cùng chuyên mục:
Chúc các em học tập tốt !