YOMEDIA
NONE

Bài tập 7 trang 80 SBT Toán 8 Tập 1

Giải bài 7 tr 80 sách BT Toán lớp 8 Tập 1

Cho tứ giác \(ABCD.\) Chứng minh rằng tổng hai góc ngoài tại các đỉnh \(A\) và \(C\) bằng tổng hai góc trong tại các đỉnh \(B\) và \(D.\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Ta sử dụng kiến thức:

+) Tổng bốn góc của một tứ giác bằng \(360^o.\)

+) Góc ngoài của tứ giác là góc kề bù với một góc của tứ giác.

Lời giải chi tiết

Gọi \(\widehat {{A_1}},\;\widehat {{C_1}}\) là góc trong của tứ giác tại đỉnh \(A\) và \(C.\)

Gọi \({\widehat A_2},{\widehat C_2}\) là góc ngoài tại đỉnh \(A\) và \(C.\)

Ta có: \({\widehat A_1} + {\widehat A_2} = {180^0}\) (\(2\) góc kề bù)

\(\Rightarrow {\widehat A_2} = {180^0} - {\widehat A_1}\)      

          \({\widehat C_1} + {\widehat C_2} = {180^0}\) (\(2\) góc kề bù)

\( \Rightarrow {\widehat C_2} = {180^0} - {\widehat C_1}\)    

Suy ra:

\(\eqalign{
& {\widehat A_2} + {\widehat C_2} = {180^0} - {\widehat A_1} + {180^0} - {\widehat C_1} \cr 
& = {360^0} - \left( {{{\widehat A}_1} + {{\widehat C}_1}} \right) (1) \cr}\)

Trong tứ giác \(ABCD\) ta có:

\({\widehat A_1} + \widehat B + {\widehat C_1} + \widehat D = {360^0}\) (tổng các góc của tứ giác)

\(\Rightarrow \widehat B + \widehat D = {360^0} - \left( {{{\widehat A}_1} + {{\widehat C}_1}} \right)(2)\)

Từ \((1)\) và \((2)\) suy ra: \({\widehat A_2} + {\widehat C_2} = \widehat B + \widehat D\)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 7 trang 80 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON