YOMEDIA
NONE

Bài tập 28 trang 31 SBT Toán 8 Tập 1

Giải bài 28 tr 31 sách BT Toán lớp 8 Tập 1

a. Chứng minh \({1 \over x} - {1 \over {x + 1}} = {1 \over {x\left( {x + 1} \right)}}\)

b. Đố. Đố em tính nhẩm được tổng sau :

\({1 \over {x\left( {x + 1} \right)}} + {1 \over {\left( {x + 1} \right)\left( {x + 2} \right)}} + {1 \over {\left( {x + 2} \right)\left( {x + 3} \right)}} + {1 \over {\left( {x + 3} \right)\left( {x + 4} \right)}} + {1 \over {\left( {x + 4} \right)\left( {x + 5} \right)}} + {1 \over {x + 5}}\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

a. Áp dụng quy tắc trừ hai phân thức :

\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)

b. Dựa vào kết quả câu a) để phân tích mỗi phân thức thành một hiệu hai phân thức thích hợp.

Lời giải chi tiết

a. Biến đổi vế trái :

\({1 \over x} - {1 \over {x + 1}} = {{x + 1} \over {x\left( {x + 1} \right)}} + {{ - x} \over {x\left( {x + 1} \right)}} = {{x + 1 - x} \over {x\left( {x + 1} \right)}} = {1 \over {x\left( {x + 1} \right)}}\)

Vế trái bằng vế phải, đẳng thức được chứng minh.

b. \({1 \over {x\left( {x + 1} \right)}} + {1 \over {\left( {x + 1} \right)\left( {x + 2} \right)}} + {1 \over {\left( {x + 2} \right)\left( {x + 3} \right)}} + {1 \over {\left( {x + 3} \right)\left( {x + 4} \right)}} + {1 \over {\left( {x + 4} \right)\left( {x + 5} \right)}} + {1 \over {x + 5}}\)

\( = {1 \over x} - {1 \over {x + 1}} + {1 \over {x + 1}} - {1 \over {x + 2}} + {1 \over {x + 2}} - {1 \over {x + 3}} + {1 \over {x + 3}} - {1 \over {x + 4}} + {1 \over {x + 4}} - {1 \over {x + 5}} + {1 \over {x + 5}} = {1 \over x}\)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 28 trang 31 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON