YOMEDIA
NONE

Bài tập 17 trang 87 SBT Toán 8 Tập 2

Giải bài 17 trang 87 SBT Toán 8 Tập 2

Tam giác ABC có AB = 15cm, AC = 20cm, BC = 25cm. Đường phân giác góc BAC cắt BC tại D (h.14)

a. Tính độ dài đoạn thẳng DB và DC

b. Tính tỉ số diện tích của hai tam giác ABD và ACD.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng:

- Tính chất đường phân giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy.

- Tính chất: \(\dfrac{a}{b} = \dfrac{c}{d} \Rightarrow \dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)

Lời giải chi tiết

a) Áp dụng tính chất đường phân giác vào \(\Delta ABC\), đường phân giác \(AD\) ta có:

\(\displaystyle {{DB} \over {DC}} = {{AB} \over {AC}}\)

\(\displaystyle  \Rightarrow {{DB} \over {DC}} = {{15} \over {20}}=\dfrac{3}{4}\)

Ta có: 

\(\displaystyle {{DB} \over {DC}} = \dfrac{3}{4}\)

\( \displaystyle  \Rightarrow  {{DB} \over {DB + DC}} = \dfrac{3}{{3 + 4}}\)

\(\displaystyle  \Rightarrow {{DB} \over {BC}} = \dfrac{3}{7}\)

\( \displaystyle  \Rightarrow DB = \dfrac{3}{7}.BC = \dfrac{3}{7}.25 = {{75} \over 7}\) (cm)

Từ đó: \(DC=BC-BD\)\( \displaystyle =25- {{75} \over 7}={{100} \over 7}\) (cm)

b) Kẻ \(AH ⊥ BC\)

Ta có: \(\displaystyle  {S_{ABD}} = {1 \over 2}AH.BD;\) \(\displaystyle  {S_{ADC}} = {1 \over 2}AH.DC\)

\(\Rightarrow\displaystyle {{{S_{ABD}}} \over {{S_{ADC}}}} = {\displaystyle{{1 \over 2}AH.BD} \over {\displaystyle{1 \over 2}AH.DC}} = {{BD} \over {DC}}\)

Mà \(\displaystyle {{DB} \over {DC}} = {{15} \over {20}} = {3 \over 4}\) (chứng minh trên )

Vậy \(\displaystyle {{{S_{ABD}}} \over {{S_{ADC}}}} = {3 \over 4}\).

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 17 trang 87 SBT Toán 8 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON