YOMEDIA
NONE

Bài tập 23 trang 88 SBT Toán 8 Tập 2

Giải bài 23 trang 88 SBT Toán 8 Tập 2

Tam giác vuông ABC có\(\widehat A = 90^\circ \), AB = 12cm, AC = 16cm; đường phân giác góc A cắt BC tại D.

a. Tính BC, BD và CD.

b. Vẽ đường cao AH, tính AH, HD và AD.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng:

- Tính chất đường phân giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy.

- Định lí Pytago: Trong tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của các cạnh góc vuông.

- Tính chất:  \(\dfrac{a}{b} = \dfrac{c}{d} \Rightarrow \dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)

Lời giải chi tiết

a) Áp dụng định lí Py-ta-go vào tam giác vuông \(ABC\), ta có: 

\(B{C^2} = A{B^2} + A{C^2} = {12^2} + {16^2} \)\(\,= 400\)

\( \Rightarrow BC = 20 \;(cm)\).

Vì \(AD\) là đường phân giác của \(\widehat {BAC}\) nên ta có:

\(\displaystyle {{DB} \over {DC}} = {{AB} \over {AC}}\) (tính chất đường phân giác của tam giác)

Áp dụng tính chất mở rộng của tỉ lệ thức ta có:

\(\displaystyle {{DB} \over {DC}} = {{AB} \over {AC}}\)

\( \Rightarrow \displaystyle {{DB} \over {DB + DC}} = {{AB} \over {AB + AC}}\)

\( \Rightarrow \displaystyle {{DB} \over {BC}} = {{AB} \over {AB + AC}}\)

\( \Rightarrow \displaystyle  DB = {{BC.AB} \over {AB + AC}} = {{20.12} \over {12 + 16}} \)\(\, \displaystyle = {{60} \over 7}\) (cm)

Vậy \(DC = BC - DB = \displaystyle 20 - {{60} \over 7} = {{80} \over 7}\) (cm)

b) Ta có \(\displaystyle {S_{ABC}} = {1 \over 2}AB.AC = {1 \over 2}AH.BC\)

\( \Rightarrow AB.AC = AH.BC\)

\( \Rightarrow \displaystyle  AH = {{AB.AC} \over {BC}} = {{12.16} \over {20}} = 9,6\)  (cm)

Áp dụng định lí Py-ta-go vào tam giác vuông \(AHB\), ta có:

\(A{B^2} = A{H^2} + H{B^2}\)

\( \Rightarrow  H{B^2} = A{B^2} - A{H^2}\)\(\, = {12^2} - {\left( {9,6} \right)^2} = 51,84 \)

\(\Rightarrow HB = 7,2\;(cm)  \)

Vậy \(\displaystyle  HD = BD - HB = {{60} \over 7} - 7,2 \)\(\,\approx 1,37\; (cm)\)

Áp dụng định lí Py-ta-go vào tam giác vuông \(AHD\), ta có:

\(A{D^2} = A{H^2} + H{D^2} \)\(\,= {\left( {9,6} \right)^2} + {\left( {1,37} \right)^2} \)\(\,= 94,0369\)

\( \Rightarrow  AD ≈ 9,7\; (cm)\).

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 23 trang 88 SBT Toán 8 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON