YOMEDIA
NONE

Bài tập 24 trang 88 SBT Toán 8 Tập 2

Giải bài 24 trang 88 SBT Toán 8 Tập 2

Tam giác vuông ABC có$\widehat A = 90^\circ $, AB = a (cm), AC = b (cm), (a < b), trung tuyến AM, đường phân giác AD (M và D thuộc cạnh BC) (h.20).

a. Tính độ dài các đoạn thẳng BC, BD, DC, AM và DM theo a, b.

b. Hãy tính các đoạn thẳng trên đây chính xác đến chữ số thập phân thứ hai khi biết a = 4,15cm, b = 7,25cm.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng:

- Tính chất đường phân giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy.

- Định lí Pytago: Bình phương của cạnh huyền bằng tổng các bình phương của các cạnh góc vuông.

- Tính chất:  \(\dfrac{a}{b} = \dfrac{c}{d} \Rightarrow \dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)

Lời giải chi tiết

a) Áp dụng định lí Py-ta-go vào tam giác vuông \(ABC\), ta có:

\(B{C^2} = A{B^2} + A{C^2} = {a^2} + {b^2}\)

\( \Rightarrow BC = \sqrt {{a^2} + {b^2}} \)

Ta có: \( \displaystyle AM = BM = {1 \over 2}BC\)  (trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy).

\( \displaystyle \Rightarrow AM = {1 \over 2}\sqrt {{a^2} + {b^2}} \)

Vì \(AD\) là đường phân giác của \(\widehat {BAC}\) nên theo tính chất đường phân giác của tam giác ta có:

\(\displaystyle {{DB} \over {DC}} = {{AB} \over {AC}}\)

Từ đó, ta có:

\(\displaystyle {{DB} \over {DC}} = {{AB} \over {AC}}\)

\( \Rightarrow \displaystyle {{DB} \over {DB + DC}} = {{AB} \over {AB + AC}}\)

\( \Rightarrow \displaystyle {{DB} \over {BC}} = {{AB} \over {AB + AC}}\)

\( \Rightarrow DB = \dfrac{{AB.BC}}{{AB + AC}} = \dfrac{{a\sqrt {{a^2} + {b^2}} }}{{a + b}}\)

Vậy \(DC = BC - DB \)\(\,=\displaystyle \sqrt {{a^2} + {b^2}}  - {{a\sqrt {{a^2} + {b^2}} } \over {a + b}}\)\(\,\displaystyle = {{b\sqrt {{a^2} + {b^2}} } \over {a + b}}\)

\(\eqalign{  & DM = BM - BD  \cr  &  = {1 \over 2}\sqrt {{a^2} + {b^2}}  - {{a\sqrt {{a^2} + {b^2}} } \over {a + b}}   \cr} \)

\(\begin{array}{l}
= \dfrac{{\left( {a + b} \right)\sqrt {{a^2} + {b^2}} - 2a\sqrt {{a^2} + {b^2}} }}{{2\left( {a + b} \right)}}\\
= \dfrac{{\sqrt {{a^2} + {b^2}} \left( {a + b - 2a} \right)}}{{2\left( {a + b} \right)}}\\
= \dfrac{{\left( {b - a} \right)\sqrt {{a^2} + {b^2}} }}{{2\left( {a + b} \right)}}
\end{array}\)

b) Với \(a = 4,15\;cm; b= 7,25 \;cm\), ta tính được:

\( BC = \sqrt {{{\left( {4,15} \right)}^2} + {{\left( {7,25} \right)}^2}}\)\(\;  \approx 8,35(cm)  \)

\(\displaystyle BD = {{4,15\sqrt {{{\left( {4,15} \right)}^2} + {{\left( {7,25} \right)}^2}} } \over {4,15 + 7,25}} \)\(\,\approx 3,04(cm)  \)

\(DC = \dfrac{{b\sqrt {{a^2} + {b^2}} }}{{a + b}}\approx 5,31(cm)  ;\)

\(\displaystyle  AM = {1 \over 2}\sqrt {{a^2} + {b^2}} \approx 4,18(cm) ;\)

\(\,DM= \dfrac{{\left( {b - a} \right)\sqrt {{a^2} + {b^2}} }}{{2\left( {a + b} \right)}} \approx 1,14(cm)  .\

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 24 trang 88 SBT Toán 8 Tập 2 HAY thì click chia sẻ 
YOMEDIA
  • Nguyễn Quang Thanh Tú
    Bài 3.1 - Bài tập bổ sung (Sách bài tập - tập 2 - trang 89)

    Tam giác ABC vuông tại A có đường phân giác AD. Biết rằng độ dài của các cạnh góc vuông AB = 3,75 cm, AC = 4,5 cm (h.bs.2)

    Hãy chọn kết quả đúng (tính chính xác đến hai chữ số thập phân)

    1) Độ dài của đoạn thẳng BD là :

    (A) 18,58                                     (B) 2,66

    (C) 2,65                                       (D) 3,25

    2) Độ dài của đoạn thẳng CD là :

    (A) 27,13                                     (B) 2,68

    (C) 3,20                                       (D) 3,15

    Theo dõi (0) 1 Trả lời
  • Mai Thuy
    Bài 24 (Sách bài tập - tập 2 - trang 88)

    Tam giác vuông ABC có \(\widehat{A}=90^0\), AB = a (cm), AC = b (cm), (a <b), trung tuyến AM, đường phân giác AD (M và D thuộc cạnh BC) (h.20)

    a) Tính độ dài các đoạn thẳng BC, BDm DCm AM và DM theo a, b

    b) Hãy tính các đọa thẳng trên đây chính xác đến chữ số thập phân thứ hai khi biết a = 4,15 cm, b = 7,25 cm

    Theo dõi (0) 1 Trả lời
  • bach dang
    Bài 22 (Sách bài tập - tập 2 - trang 88)

    Cho tam giác cân ABC (AB = AC), đường phân giác góc B cắt AC tại D và cho biết AB = 15 cm, BC = 10 cm (h.19)

    a) Tính AD, DC

    b) Đường vuông góc với BD tại B cắt đường thẳng AC kéo dài tại E. Tính EC

    Theo dõi (0) 1 Trả lời
  • can chu

    Cho tam giác ABC có AB = 9cm ; AC = 12cm ; BC =15cm, phân giác góc B căt AC tại D và cắt đg cao AH tại I

    a) Tính AD = ? ; DC = ?

    b) C/m : IH . BD = IA .IB

    Mn ưi giúp mk vs nakkk

    Theo dõi (0) 1 Trả lời
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON