YOMEDIA
NONE

Bài tập 16 trang 28 SBT Toán 8 Tập 1

Giải bài 16 tr 28 sách BT Toán lớp 8 Tập 1

Cho hai phân thức \({1 \over {{x^2} + 7x - 15}}\) và \({2 \over {{x^2} - 2x - 3}}\)

Chứng tỏ rằng có thể chọn đa thức \({x^3} - 7{x^2} + 7x + 15\) làm mẫu thức chung để quy đồng mẫu thức hai phân thức đã cho. Hãy quy đồng mẫu thức.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Thực hiện phép chia đa thức \({x^3} - 7{x^2} + 7x + 15\) cho hai đa thức \({{x^2} - 4x - 5}\) và \({{x^2} - 2x - 3}\). Nếu các phép chia đều là phép chia hết thì đa thức \({x^3} - 7{x^2} + 7x + 15\) là mẫu thức chung để quy đồng mẫu thức hai phân thức đã cho.

Lời giải chi tiết

Ta có:

Suy ra: \({x^3} - 7{x^2} + 7x + 15 \)\(\,= \left( {{x^2} - 4x - 5} \right)\left( {x - 3} \right)\)

 

Suy ra: \({x^3} - 7{x^2} + 7x + 15 \)\(\,= \left( {{x^2} - 2x - 3} \right)\left( {x - 5} \right)\)

Vậy đa thức \({x^3} - 7{x^2} + 7x + 15\) là mẫu thức chung để quy đồng mẫu thức hai phân thức đã cho.

* Quy đồng:

\(\displaystyle {1 \over {{x^2} - 4x - 5}}\)

\(\displaystyle= {{1.\left( {x - 3} \right)} \over {\left( {{x^2} - 4x - 5} \right).\left( {x - 3} \right)}}\)

\(\displaystyle= {{x - 3} \over {{x^3} - 7{x^2} + 7x + 15}}\)

\(\displaystyle{2 \over {{x^2} - 2x - 3}} \)

\(\displaystyle= {{2.\left( {x - 5} \right)} \over {\left( {{x^2} - 2x - 3} \right)\left( {x - 5} \right)}} \)

\(\displaystyle= {{2\left( {x - 5} \right)} \over {{x^3} - 7{x^2} + 7x + 15}}  \)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 16 trang 28 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON