YOMEDIA
NONE

Bài tập 4.1 trang 28 SBT Toán 8 Tập 1

Giải bài 4.1 tr 28 sách BT Toán lớp 8 Tập 1

Quy đồng mẫu thức ba phân thức

\(\displaystyle {x \over {{x^2} - 2xy + {y^2} - {z^2}}}\), \(\displaystyle {y \over {{y^2} - 2yz + {z^2} - {x^2}}}\) , \(\displaystyle {z \over {{z^2} - 2zx + {x^2} - {y^2}}}\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

 Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết

Ta có:

+) \( {x^2} - 2xy + {y^2} - {z^2}\)\(\, = {\left( {x - y} \right)^2} - {z^2} \)\(\,= \left( {x - y + z} \right)\left( {x - y - z} \right)  \)

+) \({y^2} - 2yz + {z^2} - {x^2}\)\(\, = {\left( {y - z} \right)^2} - {x^2}\)\(\, = \left( {y - z + x} \right)\left( {y - z - x} \right)  \)\(\, =  - \left( {x - y + z} \right)\left( {x + y - z} \right)  \)

+) \({z^2} - 2xz + {x^2} - {y^2} = {\left( {x - z} \right)^2} - {y^2}\)\(\, = \left( {x - z + y} \right)\left( {x - z - y} \right) \)\(\,= \left( {x + y - z} \right)\left( {x - y - z} \right) \)

MTC =\(\left( {x - y + z} \right)\left( {x + y - z} \right)\left( {x - y - z} \right)\)

\( \displaystyle{x \over {{x^2} - 2xy + {y^2} - {z^2}}} \)\(\,\displaystyle= {x \over {\left( {x - y + z} \right)\left( {x - y - z} \right)}}\)\(\, \displaystyle= {{x\left( {x + y - z} \right)} \over {\left( {x - y + z} \right)\left( {x + y - z} \right)\left( {x - y - z} \right)}}  \)

\(\displaystyle{y \over {{y^2} - 2yz + {z^2} - {x^2}}} \)\(\,\displaystyle= {y \over {\left( {y - z + x} \right)\left( {y - z - x} \right)}} \)\(\,\displaystyle= {{ - y} \over {\left( {x - y + z} \right)\left( {x + y - z} \right)}}  \)\(\, \displaystyle= {{ - y\left( {x - y - z} \right)} \over {\left( {x - y + z} \right)\left( {x + y - z} \right)\left( {x - y - z} \right)}}  \)

\(\displaystyle{z \over {{z^2} - 2zx + {x^2} - {y^2}}} \)\(\,\displaystyle= {z \over {\left( {x + y - z} \right)\left( {x - y - z} \right)}}\)\(\, \displaystyle= {{z\left( {x - y + z} \right)} \over {\left( {x + y - z} \right)\left( {x - y + z} \right)\left( {x - y - z} \right)}}  \)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 4.1 trang 28 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON