YOMEDIA
NONE

Bài tập 141 trang 97 SBT Toán 8 Tập 1

Giải bài 141 tr 97 sách BT Toán lớp 8 Tập 1

Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD = CE. Gọi M, N, I, K theo thứ tự là trung điểm của BE, CD, DE, BC. Chứng minh rằng IK vuông góc với MN.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Vận dụng kiến thức :

- Hai đường chéo của hình thoi vuông góc với nhau tại trung điểm của mỗi đường.

- Tính chất đường trung bình của tam giác: Đường trung bình của tam giác song song với cạnh thứ ba và bằng nửa cạnh ấy.

- Chứng minh MKNI là hình bình hành có hai cạnh kề bằng nhau nên là hình thoi.

Lời giải chi tiết

Trong ∆ BCD ta có:

K là trung điểm của BC (gt)

N là trung điểm của CD (gt)

nên NK là đường trung bình của ∆ BCD

⇒ NK // BD và NK =\({1 \over 2}\)BD (1)

Trong ∆ BED ta có:

M là trung điểm của BE (gt)

I là trung điểm của DE (gt)

nên MI là đường trung bình của ∆ BED

⇒ MI // BD và MI =\({1 \over 2}\)BD (tính chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: MI // NK và MI = NK

nên tứ giác MKNI là hình bình hành

Trong ∆ BEC ta có:

MK là đường trung bình

 MK = \({1 \over 2}\)CE (tính chất đường trung bình của tam giác)    

BD = CE (gt)

Suy ra: MK = KN

Vây hình bình hành MKNI là hình thoi.

⇒ IK ⊥ MN (tính chất hình thoi)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 141 trang 97 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON