YOMEDIA
NONE

Giải bài 1 trang 60 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST

Giải bài 1 trang 60 SBT Toán 7 Chân trời sáng tạo tập 2

Cho tam giác ABC có trung tuyến AM và G là trọng tâm. Chứng minh:

a) \({S_{AMB}} = {S_{AMC}}\)

b) \({S_{ABG}} = 2{S_{BMG}}\)

c) \({S_{GAB}} = {S_{GBC}} = {S_{GAC}}\) 

ATNETWORK

Hướng dẫn giải chi tiết Bài 1

Phương pháp giải

So sánh đường cao và các cạnh đáy tương ứng của các tam giác

Lời giải chi tiết

a) Vẽ đường cao AH của tam giác ABC.

Hai tam giác AMB và AMC có cùng đường cao AH và có cạnh đáy bằng nhau: BM = CM

Suy ra: \({S_{AMB}} = {S_{AMC}}\)(vì \({S_{AMB}} = \frac{1}{2}.AH.BM{;^{}}{S_{AMC}} = \frac{1}{2}.AN.CM\))

b) Vẽ đường cao BK của tam giác BGM.

Hai tam giác ABG và BMG có cùng đường cao BK và có cạnh đáy AG = 2MG.

Suy ra: \({S_{ABG}} = \frac{1}{2}.BK.AG = \frac{1}{2}.BK.2MG = 2.\frac{1}{2}.BK.MG = 2{S_{BMG}}\)

c) Ta có:

\({S_{ABG}} = \frac{2}{3}{S_{ABM}} = \frac{1}{3}{S_{ABC}}\)

Tương tự: \({S_{ACG}} = \frac{2}{3}{S_{ACM}} = \frac{1}{3}{S_{ABC}}\)

Suy ra: \({S_{BCG}} = \frac{1}{3}{S_{ABC}}\)

Vậy: \({S_{GAB}} = {S_{GBC}} = {S_{GAC}} = \frac{1}{3}{S_{ABC}}\) 

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 1 trang 60 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON