Bài tập 18 trang 103 SGK Hình học 11 NC
Cho hình chóp S.ABCD có SA ⊥ mp(ABC), các tam giác ABC và SBC không vuông. Gọi H và K lần lượt là trực tâm của tam giác ABC và SBC.
Chứng minh rằng :
a. AH, SK, BC đồng quy ;
b. SC ⊥ mp(BHK)
c. HK ⊥ mp(SBC).
Hướng dẫn giải chi tiết
a) Gọi I là giao điểm của hai đường thẳng AH và BC
Ta có : BC ⊥ AH (do H là trực tâm ΔABC)
BC ⊥ SA (do SA ⊥ mp(ABC))
Suy ra BC ⊥ (SAI) mà SI ⊂ (SAI) nên BC ⊥ SI
K là trực tâm ΔSBC nên SI qua K
Vậy AH, SK, BC đồng quy tại I.
b) Ta có : BH ⊥ AC và BH ⊥ SA nên BH ⊥ mp(SAC)
Suy ra BH ⊥ SC
Mặt khác SC ⊥ BK nên SC ⊥ mp(BHK)
c) Ta có: SC ⊥ HK (do HK ⊥ mp(BHK)) mà HK ⊥ BC (do BC ⊥ mp(ASI))
Vậy HK ⊥ mp(SBC).
-- Mod Toán 11 HỌC247
-
hình không gian. 11
bởi Tam Thiên 09/08/2017
Cho hình chop' SABCD , ABCD là hình vuông cạnh a ,SA vuông góc với (ABCD),SA=2a Tính
a,cos(SB;(ABCD))
b,cos(SC;(SAB))
c,cos(SB,CD)
d,cos ((SBC);(ABCD))
e,cos((SBC);(SAD))
f,cos((SBC);(SCD))
Theo dõi (1) 1 Trả lời -
hình không gian. 11.
bởi Tam Thiên 09/08/2017
Cho hình chop' SABCD , ABCD là hình vuông cạnh a ,SA vuông góc với (ABCD),SA=a Tính
a,cos(SB;(ABCD))
b,cos(SC;(SAB))
c,cos(SB,CD)
d,cos ((SBC);(ABCD))
e,cos((SBC);(SAD))
f,cos((SBC);(SCD))
Theo dõi (1) 2 Trả lời