Bài tập 7.27 trang 37 SBT Toán 11 Tập 2 Kết nối tri thức
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Tính theo \(a\) khoảng cách:
a) Giữa hai đường thẳng \(AB\) và \(C'D'\).
b) Giữa đường thẳng \(AC\) và \(\left( {A'B'C'D'} \right)\).
c) Từ điểm \(A\) đường thẳng \(B'D'\).
d) Giữa hai đường thẳng \(AC\) và \(B'D'\).
Hướng dẫn giải chi tiết Bài 7.27
a) Vì \(BC'\) vuông góc với cả hai đường thẳng \(AB\)và \(C'D'\) nên \(d\left( {AB,C'D'} \right) = BC' = a\sqrt 2 \).
b) Vì \(AC\parallel \left( {A'B'C'D'} \right)\) nên \(d\left( {AC,\left( {A'B'C'D'} \right)} \right) = d\left( {A,\left( {A'B'C'D'} \right)} \right) = AA' = a\).
c) Gọi \(O'\) là giao điểm của \(A'C'\) và \(B'D'\).
Ta có: \(AO' \bot B'D'\), theo định lý Pythagore áp dụng cho tam giác \(AA'O'\) vuông tại \(A'\) thì \(AO' = \frac{{a\sqrt 6 }}{2}\).
Do đó, \(d\left( {A,B'D'} \right) = AO' = \frac{{a\sqrt 6 }}{2}\).
d) Ta có: \(d\left( {AC,B'D'} \right) = d\left( {AC,\left( {A'B'C'D'} \right)} \right) = d\left( {A,\left( {A'B'C'D'} \right)} \right) = AA' = a\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải Bài 7.26 trang 59 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Giải Bài 7.27 trang 59 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Bài tập 7.28 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.29 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.30 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.31 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.32 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT