Bài tập 7.28 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\). \(SA \bot \left( {ABC} \right)\) và \(SA = 2a\). Tính theo \(a\) khoảng cách:
a) Từ điểm \(B\) đến mặt phẳng \(\left( {SAC} \right)\).
b) Từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right)\).
c) Giữa hai đường thẳng \(AB\) và \(SC\).
Hướng dẫn giải chi tiết Bài 7.28
a) Kẻ \(BH \bot AC\) tại \(H\), mà \(SA \bot \left( {ABC} \right)\) nên \(SA \bot BH\), suy ra \(BH \bot \left( {SAC} \right)\).
Do đó, \(d\left( {B,\left( {SAC} \right)} \right) = BH = \frac{{a\sqrt 3 }}{2}\).
b) Kẻ \(AM \bot BC\) tại \(M\) và \(AK \bot SM\) tại \(K\) thì \(AK \bot \left( {SBC} \right)\).
Suy ra \(d\left( {A,\left( {SBC} \right)} \right) = AK\).
Ta có: \(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{M^2}}} = \frac{{19}}{{12{a^2}}} \Rightarrow AK = 2{\rm{a}}\sqrt {\frac{3}{{19}}} \).
Nên \(d\left( {A,\left( {SBC} \right)} \right) = 2{\rm{a}}\sqrt {\frac{3}{{19}}} \).
c) Dựng hình bình hành \(ABCD\) thì \(AB\parallel \left( {SCD} \right)\) và mặt phẳng \(\left( {SCD} \right)\) chứa \(SC\).
Nên\(d\left( {AB,SC} \right) = d\left( {AB,\left( {SCD} \right)} \right)\).
Mà \(d\left( {AB,\left( {SCD} \right)} \right) = d\left( {A,\left( {SCD} \right)} \right)\), tính tương tự câu b) ta được:
\(d\left( {A,\left( {SCD} \right)} \right) = 2{\rm{a}}\sqrt {\frac{3}{{19}}} \). Vậy \(d\left( {AB,SC} \right) = 2{\rm{a}}\sqrt {\frac{3}{{19}}} \).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải Bài 7.27 trang 59 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Bài tập 7.27 trang 37 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.29 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.30 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.31 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 7.32 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT