YOMEDIA
NONE

Bài tập 7.31 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT

Bài tập 7.31 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức

Cho hình lăng trụ đứng \(ABC \cdot A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\) và \(AB = AC = AA' = a\). Tính theo a khoảng cách:

a) Từ điểm \(A\) đến đường thẳng \(B'C'\).

b) Giữa hai đường thẳng \(BC\) và \(AB'\).

 
ATNETWORK

Hướng dẫn giải chi tiết Bài 7.31

a) Kẻ \(AH\) vuông góc với \(B'C'\) tại \(H\) thì \(d\left( {A,B'C'} \right) = AH\).

Ta có: \(AB' = AC' = B'C' = a\sqrt 2 \) nên \(AH = \frac{{a\sqrt 6 }}{2}\).

Vậy \(d\left( {A,B'C'} \right) = \frac{{a\sqrt 6 }}{2}\).

b) Vì \(BC//\left( {AB'C'} \right)\).

Nên \(d\left( {BC,AB'} \right) = d\left( {BC,\left( {AB'C'} \right)} \right) = d\left( {C,\left( {AB'C'} \right)} \right).\)

Mà \(CA'\) cắt \(AC'\) tại trung điểm của \(CA'\).

Nên \(d\left( {C,\left( {AB'C'} \right)} \right) = d\left( {A',\left( {AB'C'} \right)} \right)\).

Đặt \(d\left( {A',\left( {AB'C'} \right)} \right) = h\) thì \(\frac{1}{{{h^2}}} = \frac{1}{{A'{A^2}}} + \frac{1}{{A'{B^{{\rm{'}}2}}}} + \frac{1}{{A'{C^{{\rm{'}}2}}}} = \frac{3}{{{a^2}}}\), suy ra \(h = \frac{{a\sqrt 3 }}{3}\).

Vậy \(d\left( {BC,AB'} \right) = \frac{{a\sqrt 3 }}{3}\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 7.31 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON