Bài tập 2.21 trang 39 SBT Toán 11 Tập 1 Kết nối tri thức
Chứng minh rằng mỗi dãy số \(\left( {{u_n}} \right)\) sau là một cấp số nhân. Hãy tìm số hạng đầu và công bội của nó:
a) \({u_n} = - 3.{\left( {\frac{1}{2}} \right)^n}\);
b) \({u_n} = \frac{{{2^n}}}{{{3^{n - 1}}}}\);
Hướng dẫn giải chi tiết Bài 2.21
a) Từ \({u_n} = - 3.{\left( {\frac{1}{2}} \right)^n}\) suy ra \({u_{n + 1}} = - 3.{\left( {\frac{1}{2}} \right)^{n + 1}}\).
Do đó, \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{ - 3.{{\left( {\frac{1}{2}} \right)}^{n + 1}}}}{{ - 3.{{\left( {\frac{1}{2}} \right)}^n}}} = \frac{1}{2}\forall n\).
Vậy dãy số trên là cấp số nhân với \({u_1} = \frac{{ - 3}}{2}\) và công bội \(q = \frac{1}{2}\).
b) Từ \({u_n} = \frac{{{2^n}}}{{{3^{n - 1}}}}\) suy ra \({u_{n + 1}} = \frac{{{2^{n + 1}}}}{{{3^n}}}\).
Do đó, \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\frac{{{2^{n + 1}}}}{{{3^n}}}}}{{\frac{{{2^n}}}{{{3^{n - 1}}}}}} = \frac{2}{3}\forall n\).
Vậy dãy số trên là cấp số nhân với \({u_1} = 2\) và công bội \(q = \frac{2}{3}\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải Bài 2.20 trang 55 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 2.21 trang 55 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Bài tập 2.22 trang 39 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.23 trang 39 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.24 trang 39 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.25 trang 39 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.26 trang 39 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.27 trang 40 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.28 trang 40 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.29 trang 40 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 2.30 trang 40 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT