Vận dụng 3 trang 70 SGK Toán 10 Chân trời sáng tạo tập 2
Một cổng chào có hình parabol cao 10 m và bề rộng của cổng tại chân cổng là 5 m. Tính bề rộng của cổng tại chỗ cách đỉnh 2 m
Hướng dẫn giải chi tiết Vận dụng 3
Phương pháp giải
Bước 1: Gọi phương trình của parabol một cách tổng quát
Bước 2: Thay các giả thiết tìm tiêu điểm
Bước 3: Thay \(x = 2\) vào phương trình chính tắc tìm y
Lời giải chi tiết
Vẽ lại parabol và chọn hệ trục tọa độ như hình dưới
Gọi phương trình của parabol là \({y^2} = 2px\)
Ta có chiều cao của cổng \(OH = BK = 10\), chiều rộng tại chân cổng \(BD = 2BH = 5\)
Vậy điểm B có tọa độ là \(B\left( {10;\frac{5}{2}} \right)\)
Thay tọa độ điểm B vào phương trình parabol ta có:
\({\left( {\frac{5}{2}} \right)^2} = 2p.10 \Rightarrow p = \frac{5}{{16}}\), suy ra phương trình parabol có dạng \({y^2} = \frac{5}{8}x\)
Thay \(x = 2\) vào phương trình \({y^2} = \frac{5}{8}x\) ta tìm được \(y = \frac{{\sqrt 5 }}{2}\)
Vậy bề rộng của cổng tại chỗ cách đỉnh 2 m là \(\sqrt 5 \) m
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Hoạt động khám phá 6 trang 68 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 3 trang 70 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 70 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 70 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 70 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 71 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 71 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 71 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 75 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 75 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 75 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 76 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 76 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 76 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST