YOMEDIA
NONE

Giải Bài 2 trang 75 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 2 trang 75 SBT Toán 10 Chân trời sáng tạo tập 2

Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ các tiêu điểm của chúng

a) \(\left( {{C_1}} \right):7{x^2} + 13{y^2} = 1\)

b) \(\left( {{C_2}} \right):25{x^2} - 9{y^2} = 225\)

c) \(\left( {{C_3}} \right):x = 2{y^2}\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 2

Phương pháp giải

Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} - {b^2}} \)

Phương trình Hypebol có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} + {b^2}} \)

Parabol \(\left( P \right)\) có dạng \({y^2} = 2px\) với \(p > 0\) có tiêu điểm \(F\left( {\frac{p}{2};0} \right)\), phương trình đường chuẩn \(\Delta :x =  - \frac{p}{2}\)

Lời giải chi tiết

a) \(\left( {{C_1}} \right):7{x^2} + 13{y^2} = 1 \Rightarrow \frac{{{x^2}}}{{\frac{1}{7}}} + \frac{{{y^2}}}{{\frac{1}{{13}}}} = 1 \Rightarrow {a^2} = \frac{1}{7};{b^2} = \frac{1}{{13}}\)

\( \Rightarrow {c^2} = {a^2} - {b^2} = \frac{1}{7} - \frac{1}{{13}} = \frac{6}{{91}} \Rightarrow c = \sqrt {\frac{6}{{91}}} \)

\(\left( {{C_1}} \right)\) là elip có hai tiêu điểm \({F_1}\left( { - \sqrt {\frac{6}{{91}}} ;0} \right),{F_2}\left( {\sqrt {\frac{6}{{91}}} ;0} \right)\)

b) \(\begin{array}{l}\left( {{C_2}} \right):25{x^2} - 9{y^2} = 225 \Rightarrow \frac{{25{x^2}}}{{225}} - \frac{{9{y^2}}}{{225}} = 1 \Rightarrow \frac{{{x^2}}}{9} - \frac{{{y^2}}}{{25}} = 1\\ \Rightarrow {a^2} = 9;{b^2} = 25;{c^2} = {a^2} + {b^2} = 9 + 25 = 34 \Rightarrow c = \sqrt {34} \end{array}\)

\(\left( {{C_2}} \right)\) là hypebol có hai tiêu điểm \({F_1}\left( { - \sqrt {34} ;0} \right),{F_2}\left( {\sqrt {34} ;0} \right)\)

c) \(\left( {{C_3}} \right):x = 2{y^2} \Rightarrow {y^2} = \frac{1}{2}x \Rightarrow p = \frac{1}{4}\)

\(\left( {{C_3}} \right)\) là parabol có tiêu điểm \(F\left( {\frac{1}{8};0} \right)\) 

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Bài 2 trang 75 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON