YOMEDIA
NONE

Luyện tập 2 trang 53 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Luyện tập 2 trang 53 SGK Toán 10 Kết nối tri thức tập 1.

Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và O là trung điểm của MN. Chứng minh rằng: \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 .\)

ATNETWORK

Hướng dẫn giải chi tiết

Phương pháp giải

Nếu I là trung điểm của AB thì \(\overrightarrow {IA}  + \;\overrightarrow {IB}  = \;\overrightarrow 0 \).

Hướng dẫn giải

Dễ thấy: \(\overrightarrow {OA}  = \overrightarrow {OM}  + \overrightarrow {MA} \); \(\overrightarrow {OB}  = \overrightarrow {OM}  + \overrightarrow {MB} \)

Tương tự: \(\overrightarrow {OC}  = \overrightarrow {ON}  + \overrightarrow {NC} \); \(\overrightarrow {OD}  = \overrightarrow {ON}  + \overrightarrow {ND} \)

\(\begin{array}{l} \Rightarrow \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \left( {\overrightarrow {OM}  + \overrightarrow {MA} } \right) + \left( {\overrightarrow {OM}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {ON}  + \overrightarrow {NC} } \right) + \left( {\overrightarrow {ON}  + \overrightarrow {ND} } \right)\\ = \left( {\overrightarrow {OM}  + \overrightarrow {OM}  + \overrightarrow {MA}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {ON}  + \overrightarrow {ON}  + \overrightarrow {NC}  + \overrightarrow {ND} } \right)\\ = \overrightarrow {OM}  + \overrightarrow {OM}  + \overrightarrow {ON}  + \overrightarrow {ON} \\ = \left( {\overrightarrow {OM}  + \overrightarrow {ON} } \right) + \left( {\overrightarrow {OM}  + \overrightarrow {ON} } \right)\\ = \overrightarrow 0  + \overrightarrow 0 \\ = \overrightarrow 0 .\end{array}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Luyện tập 2 trang 53 SGK Toán 10 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON