Giải bài 8.7 trang 70 SGK Toán 10 Kết nối tri thức tập 2
Từ các chữ số 0, 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau?
Hướng dẫn giải chi tiết
Phương pháp giải
Sử dụng công thức chỉnh hợp: \(A_n^k = n(n – 1)…(n – k + 1) =\frac{n!}{(n - k)!} \) \((1 ≤ k ≤ n)\)
Lời giải chi tiết
Lập 3 chữ số tự nhiên từ tập các chữ số 0, 1, 2, 3, 4 là chỉnh hợp chập 3 của 5 phần từ, nên số cách lập là \(A_{5}^{3}= 60\) cách.
Tuy nhiên, số có 3 chữ số thì hàng trăm phải khác 0, các số có dạng \(\overline{0ab}\), thì số cách lập là: \(A_{4}^{2}= 12\) cách.
Vậy số các số tự nhiên có ba chữ số khác nhau, lập được từ các chữ số 0, 1, 2, 3, 4 là: 60 - 12 = 48 số.
-- Mod Toán 10 HỌC247
-
Cô giáo chia \(4\) quả táo, \(3\) quả cam và \(2\) quả chuối cho \(9\) cháu (mỗi cháu một quả). Có bao nhiêu cách chia khác nhau?
bởi cuc trang 13/09/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Vận dụng trang 70 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.6 trang 70 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.8 trang 70 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.9 trang 70 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.10 trang 71 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.11 trang 71 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.5 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.6 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.7 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.8 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.9 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.10 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.11 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.12 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT