Giải bài 8.8 trang 70 SGK Toán 10 Kết nối tri thức tập 2
Có bao nhiêu cách chọn một tập hợp gồm hai số nguyên dương nhỏ hơn 100? Có bao nhiêu cách chọn một tập hợp gồm ba số nguyên dương nhỏ hơn 100?
Hướng dẫn giải chi tiết
Phương pháp giải
Sử dụng công thức tổ hợp hợp: \(C_n^k = \frac{n!}{k! (n - k)!}\) = \(\frac{A^k_{n}}{k!}\), (\(0 ≤ k ≤ n\))
Lời giải chi tiết
Có 99 số nguyên dương nhỏ hơn 100.
+) Chọn hai số nguyên dương nhỏ hơn 100, là tổ hợp chập 2 của 99 phần tử, nên số cách chọn là: \(C_{99}^{2}= 4851\) cách.
+) Chọn ba số nguyên dương nhỏ hơn 100, là tổ hợp chập 3 của 99 phần tử, nên số cách chọn là: \(C_{99}^{3}= 156849\) cách.
-- Mod Toán 10 HỌC247
-
Cho biết có bao nhiêu cách xếp chỗ ngồi cho \(10\) bạn, trong đó có An và Bình, và \(10\) ghế kê thành hàng ngang, sao cho hai bạn An và Bình không ngồi cạnh nhau?
bởi Tuấn Tú 13/09/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 8.6 trang 70 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.7 trang 70 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.9 trang 70 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.10 trang 71 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.11 trang 71 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.5 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.6 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.7 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.8 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.9 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.10 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.11 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 8.12 trang 55 SBT Toán 10 Kết nối tri thức tập 2 - KNTT