Giải bài 68 trang 106 SBT Toán 10 Cánh diều tập 1
Cho các vectơ \(\overrightarrow a ,\overrightarrow b \ne \overrightarrow 0 \). Phát biểu nào sau đây là đúng?
A. \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\left| {\cos \left( {\overrightarrow a ,\overrightarrow b } \right)} \right|\)
B. \(\left| {\overrightarrow a .\overrightarrow b } \right| = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\)
C. \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\sin \left( {\overrightarrow a ,\overrightarrow b } \right)\)
D. \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\)
Hướng dẫn giải chi tiết Bài 68
Phương pháp giải
Sử dụng định nghĩa tích vô hướng của hai vectơ
Lời giải chi tiết
Kí hiệu \(\left( {\overrightarrow a ,\overrightarrow b } \right)\) là góc giữa hai vec tơ \(\overrightarrow a \) và \(\overrightarrow b \)
Ta có: \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\)
Chọn D
-- Mod Toán 10 HỌC247
-
Hãy nêu định nghĩa của \(\tan α, \, \, \cot α\) và giải thích vì sao ta có: \(\tan(α+kπ) = \tanα; k ∈\mathbb Z\); \(\cot(α+kπ) = \cotα; k ∈\mathbb Z\)
bởi Việt Long 29/08/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 9 trang 100 SGK Toán 10 Cánh diều tập 1 - CD
Giải bài 67 trang 106 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 69 trang 106 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 70 trang 106 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 71 trang 106 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 72 trang 107 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 73 trang 107 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 74 trang 107 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 75 trang 107 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 76 trang 107 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 77 trang 107 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 78 trang 107 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 79 trang 108 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 80 trang 108 SBT Toán 10 Cánh diều tập 1 - CD