Giải bài 6.14 trang 14 SBT Toán 10 Kết nối tri thức tập 2
Tìm parabol \(y = a{x^2} + bx + 2\), biết rằng parabol đó
a) Đi qua hai điểm \(M(1;5)\) và \(N( - 2;8)\)
b) Đi qua điểm \(A(3; - 4)\) và có trục đối xứng \(x = - \frac{3}{2}\)
c) Có đỉnh \(I(2; - 2)\)
Hướng dẫn giải chi tiết Bài 6.14
Phương pháp giải
Bước 1: Nếu biết tọa độ điểm thuộc đồ thị (kể cả đỉnh) thay tọa độ các điểm vào hàm số
Bước 2: Nếu biết PT trục đối xứng x = c hay hoành độ đỉnh parabol ta được \( - \frac{b}{{2a}} = c\).
Bước 3: Giải các PT để tìm hai giá trị a, b tương ứng
Lời giải chi tiết
a) Thay tọa độ điểm \(M(1;5)\) và \(N( - 2;8)\) vào hàm số ta có hệ PT:
\(\left\{ \begin{array}{l}5 = a + b + 2\\8 = 4a - 2b + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = 3\\4a - 2b = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 1\end{array} \right.\)
Vậy hàm số có dạng \(y = 2{x^2} + x + 2\)
b) Thay tọa độ điểm \(A(3; - 4)\) ta có PT: \(9a + 3b + 2 = - 4 \Leftrightarrow 3a + b = - 2\)
Parabol có trục đối xứng \(x = - \frac{3}{2}\) \( \Rightarrow \) \( - \frac{b}{{2a}} = - \frac{3}{2} \Leftrightarrow 3a - b = 0\)
Khi đó ta có hệ PT: \(\left\{ \begin{array}{l}3a + b = - 2\\3a - b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{3}\\b = - 1\end{array} \right.\)
Vậy hàm số có dạng \(y = - \frac{1}{3}{x^2} - x + 2\)
c) Parabol có đỉnh \(I(2; - 2)\) \( \Rightarrow - \frac{b}{{2a}} = 2 \Leftrightarrow 4a + b = 0\)
Thay tọa độ đỉnh \(I(2; - 2)\) vào hàm số ta có PT: \(4a + 2b + 2 = - 2 \Leftrightarrow 2a + b = - 2\)
Khi đó ta có hệ PT: \(\left\{ \begin{array}{l}4a + b = 0\\2a + b = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 4\end{array} \right.\)
Vậy hàm số có dạng: \(y = {x^2} - 4x + 2\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 6.12 trang 14 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.13 trang 14 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.16 trang 14 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.17 trang 14 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.18 trang 15 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.19 trang 15 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.20 trang 15 SBT Toán 10 Kết nối tri thức tập 2 - KNTT