Giải bài 3.1 trang 37 SGK Toán 10 Kết nối tri thức tập 1
Không dùng bảng số hay máy tính cầm tay, tính giá trị của các biểu thức sau:
a) \(\left( {2\sin {{30}^o} + \cos {{135}^o} - 3\tan {{150}^o}} \right).\left( {\cos {{180}^o} - \cot {{60}^o}} \right)\)
b) \({\sin ^2}{90^o} + {\cos ^2}{120^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{135^o}\)
c) \(\cos {60^o}.\sin {30^o} + {\cos ^2}{30^o}\)
Hướng dẫn giải chi tiết
Phương pháp giải
a) Bước 1: Đưa GTLG của các góc \({135^o},{150^o},{180^o}\) về GTLG của các góc \({45^o},{30^o},{0^o}\)
\(\cos {135^o} = - \cos {45^o};\cos {180^o} = - \cos {0^o}\\\tan {150^o} = - \tan {30^o}\)
Bước 2: Sử dụng bảng giá trị lượng giác của một số góc đặc biệt.
\(\sin {30^o} = \frac{1}{2};\tan {30^o} = \frac{{\sqrt 3 }}{3}\\\cos {45^o} = \frac{{\sqrt 2 }}{2};\cos {0^o} = 1;\cot {60^o} = \frac{{\sqrt 3 }}{3}\)
b) Bước 1: Đưa GTLG của các góc \({120^o},{135^o}\) về GTLG của các góc \({60^o},{45^o}\)
\(\cos {120^o} = - \cos {60^o}, \cot {135^o} = - \cot {45^o}\)
Bước 2: Sử dụng bảng giá trị lượng giác của một số góc đặc biệt.
\(\cos {0^o} = 1;\;\;\cot {45^o} = 1;\;\;\cos {60^o} = \frac{1}{2}\\\tan {60^o} = \sqrt 3 ;\;\;\sin {90^o} = 1\)
c) Sử dụng bảng giá trị lượng giác của một số góc đặc biệt.
\(\sin {30^o} = \frac{1}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\cos {60^o} = \frac{1}{2}\;\)
Hướng dẫn giải
a) Đặt \(A = \left( {2\sin {{30}^o} + \cos {{135}^o} - 3\tan {{150}^o}} \right).\left( {\cos {{180}^o} - \cot {{60}^o}} \right)\)
Ta có: \(\left\{ \begin{array}{l}\cos {135^o} = - \cos {45^o};\cos {180^o} = - \cos {0^o}\\\tan {150^o} = - \tan {30^o}\end{array} \right.\)
\( \Rightarrow A = \left( {2\sin {{30}^o} - \cos {{45}^o} + 3\tan {{30}^o}} \right).\left( { - \cos {0^o} - \cot {{60}^o}} \right)\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\left\{ \begin{array}{l}\sin {30^o} = \frac{1}{2};\tan {30^o} = \frac{{\sqrt 3 }}{3}\\\cos {45^o} = \frac{{\sqrt 2 }}{2};\cos {0^o} = 1;\cot {60^o} = \frac{{\sqrt 3 }}{3}\end{array} \right.\)
\( \Rightarrow A = \left( {2.\frac{1}{2} - \frac{{\sqrt 2 }}{2} + 3.\frac{{\sqrt 3 }}{3}} \right).\left( { - 1 - \frac{{\sqrt 3 }}{3}} \right)\)
\(\begin{array}{l} \Leftrightarrow A = - \left( {1 - \frac{{\sqrt 2 }}{2} + \sqrt 3 } \right).\left( {1 + \frac{{\sqrt 3 }}{3}} \right)\\ \Leftrightarrow A = - \frac{{2 - \sqrt 2 + 2\sqrt 3 }}{2}.\frac{{3 + \sqrt 3 }}{3}\\ \Leftrightarrow A = - \frac{{\left( {2 - \sqrt 2 + 2\sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}}{6}\\ \Leftrightarrow A = - \frac{{6 + 2\sqrt 3 - 3\sqrt 2 - \sqrt 6 + 6\sqrt 3 + 6}}{6}\\ \Leftrightarrow A = - \frac{{12 + 8\sqrt 3 - 3\sqrt 2 - \sqrt 6 }}{6}.\end{array}\)
b)
Đặt \(B = {\sin ^2}{90^o} + {\cos ^2}{120^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{135^o}\)
Ta có: \(\left\{ \begin{array}{l}\cos {120^o} = - \cos {60^o}\\\cot {135^o} = - \cot {45^o}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}{120^o} = {\cos ^2}{60^o}\\{\cot ^2}{135^o} = {\cot ^2}{45^o}\end{array} \right.\)
\( \Rightarrow B = {\sin ^2}{90^o} + {\cos ^2}{60^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{45^o}\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\left\{ \begin{array}{l}\cos {0^o} = 1;\;\;\cot {45^o} = 1;\;\;\cos {60^o} = \frac{1}{2}\\\tan {60^o} = \sqrt 3 ;\;\;\sin {90^o} = 1\end{array} \right.\)
\( \Rightarrow B = {1^2} + {\left( {\frac{1}{2}} \right)^2} + {1^2} - {\left( {\sqrt 3 } \right)^2} + {1^2}\)
\( \Leftrightarrow B = 1 + \frac{1}{4} + 1 - 3 + 1 = \frac{1}{4}.\)
c)
Đặt \(C = \cos {60^o}.\sin {30^o} + {\cos ^2}{30^o}\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\sin {30^o} = \frac{1}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\cos {60^o} = \frac{1}{2}\;\)
\( \Rightarrow C = \frac{1}{2}.\frac{1}{2} + {\left( {\;\frac{{\sqrt 3 }}{2}} \right)^2} = \frac{1}{4} + \frac{3}{4} = 1.\)
-- Mod Toán 10 HỌC247
-
Tìm góc \(\alpha \left( {0^\circ \le \alpha \le 180^\circ } \right)\) trong trường hợp sau: \(\cos \alpha = - \frac{{\sqrt 3 }}{2}\)
bởi Bánh Mì 27/11/2022
Theo dõi (0) 1 Trả lời -
Chứng minh rằng: \(\tan 125^\circ = - \cot 35^\circ \)
bởi hai trieu 27/11/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Luyện tập 2 trang 36 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Vận dụng trang 37 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.2 trang 37 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.3 trang 37 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.4 trang 37 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.1 trang 32 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.2 trang 32 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.3 trang 33 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.4 trang 33 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.5 trang 34 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.6 trang 34 SBT Toán 10 Kết nối tri thức tập 1 - KNTT