Giải bài 3.2 trang 32 SBT Toán 10 Kết nối tri thức tập 1
Cho góc \(\alpha ,\,\,{90^ \circ } < \alpha < {180^ \circ }\) thỏa mãn \(\sin \alpha = \frac{3}{4}.\) Tính giá trị của biểu thức
\(F = \frac{{\tan \alpha + 2\cot \alpha }}{{\tan \alpha + \cot \alpha }}.\)
Hướng dẫn giải chi tiết Bài 3.2
Phương pháp giải
Tính cos a, từ đó suy ra \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\) và \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\) rồi tính giá trị biểu thức F.
Lời giải chi tiết
Vì \({90^ \circ } < \alpha < {180^ \circ }\)nên \(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - \frac{9}{{16}}} = - \frac{{\sqrt 7 }}{4}.\)
Ta có: \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{3}{4}:\left( { - \frac{{\sqrt 7 }}{4}} \right) = \frac{{ - 3}}{{\sqrt 7 }}\) và \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{ - \sqrt 7 }}{4}:\frac{3}{4} = \frac{{ - \sqrt 7 }}{3}.\)
\(F = \frac{{\tan \alpha + 2\cot \alpha }}{{\tan \alpha + \cot \alpha }} = \frac{{\frac{{ - 3}}{{\sqrt 7 }} + 2.\frac{{ - \sqrt 7 }}{3}}}{{\frac{{ - 3}}{{\sqrt 7 }} - \frac{{\sqrt 7 }}{3}}} = \frac{{\frac{{ - 23}}{{3\sqrt 7 }}}}{{\frac{{ - 16}}{{3\sqrt 7 }}}} = \frac{{23}}{{16}}.\)
-- Mod Toán 10 HỌC247
-
Hãy nhắc lại khái niệm giá trị lượng giác của góc α, \(0^o\) ≤ α ≤ \(180^o\). Ta có thể mở rộng khái niệm giá trị lượng giác cho các cung và góc lượng giác.
bởi Goc pho 29/08/2022
Theo dõi (0) 1 Trả lời -
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 3.4 trang 37 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.1 trang 32 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.3 trang 33 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.4 trang 33 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.5 trang 34 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.6 trang 34 SBT Toán 10 Kết nối tri thức tập 1 - KNTT