Giải bài 1 trang 45 SBT Toán 10 Chân trời sáng tạo tập 1
Tìm tập xác định của các hàm số sau:
a) \(f\left( x \right) = \frac{{4x - 1}}{{\sqrt {2x - 5} }}\)
b) \(f\left( x \right) = \frac{{2 - x}}{{\left( {x + 3} \right)\left( {x - 7} \right)}}\)
c) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{1}{{x - 3}}{\rm{ }}\quad \;\;x \ge {\rm{0 }}\\1{\rm{ }}\quad {\rm{ }}x < 0\end{array} \right.\)
Hướng dẫn giải chi tiết Bài 1
Phương pháp giải
+ Ta có: \(T = \left\{ {y|x \in D} \right\}\) là tập giá trị của hàm số.
+ Hàm số cho bởi công thức mà không chỉ rõ tập xác định thì
TXĐ của hàm số \(y = f(x)\) là tập hợp tất cả các \(x \in \mathbb{R}\) sao cho \(f(x)\) có nghĩa.
Lời giải chi tiết
a) Hàm số xác định khi và chỉ khi \(2x - 5 > 0 \Rightarrow x > \frac{5}{2}\). Vậy \(D = \left( {\frac{5}{2}; + \infty } \right)\)
b) Hàm số xác định khi và chỉ khi \(\left\{ \begin{array}{l}x + 3 \ne 0\\x - 7 \ne 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \ne - 3\\x \ne 7\end{array} \right.\). Vậy \(D = \mathbb{R}\backslash \left\{ { - 3;7} \right\}\)
c) Khi \(x \ge 0\) hàm số xác định khi và chỉ khi \(x - 3 \ne 0 \Rightarrow x \ne 3\)
Khi \(x < 0\) hàm số xác định và có giá trị bằng 1
Vậy \(D = \mathbb{R}\backslash \left\{ 3 \right\}\)
-- Mod Toán 10 HỌC247
-
Thực hiện tìm tập xác định của hàm số sau: \(y= \sqrt{2x+1}-\sqrt{3-x}.\)
bởi Nguyen Ngoc 24/08/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 6 trang 48 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 48 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 45 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 46 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 46 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 46 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 47 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 47 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST