Giải bài 1 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1
Xác định các tập hợp \(A \cup B\) và \(A \cap B\) với
a) A = {đỏ; cam; vàng; lục; lam}, B = {lục; làm; chàm; tím}.
b) A là tập hợp các tam giác đều, B là tập hợp các tam giác cân.
Hướng dẫn giải chi tiết
Hướng dẫn giải
\(A \cup B = \{ x|x \in A\) hoặc \(x \in B\} \)
\(A \cap B = \{ x|x \in A\) và \(x \in B\} \).
Lời giải chi tiết
a) A = {đỏ; cam; vàng; lục; lam}, B = {lục; lam; chàm; tím}.
\(A \cup B = \){đỏ; cam; vàng; lục; lam; chàm; tím}
\(A \cap B = \){lục; lam}
b) Vì mỗi tam giác đều cũng là một tam giác cân nên \(A \subset B.\)
\(A \cup B = B,\;A \cap B = A.\)
Chú ý
Nếu \(A \subset B\) thì \(A \cup B = B,\;A \cap B = A.\)
-- Mod Toán 10 HỌC247
-
Xác định tập hợp sau: \(\left( { - 3;1} \right] \cap \left( {1; + \infty } \right)\)
bởi Lê Minh Bảo Bảo 03/11/2022
Theo dõi (0) 1 Trả lời -
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Thực hành 3 trang 24 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Thực hành 4 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 25 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 16 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 16 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 16 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 10 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 11 trang 17 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST