YOMEDIA
NONE

Tìm (x,y) nguyên dương thỏa x^3+y^3-9xy=0

tìm (x,y) nguyên dương thỏa \(x^3+y^3-9xy=0\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Ta có: \(x^3+y^3-9xy=0\)

    \(\Leftrightarrow (x+y)^3-3xy(x+y)-9xy=0\)

    \(\Leftrightarrow (x+y)^3=9xy+3xy(x+y)\)

    \(\Leftrightarrow (x+y)^3=3xy[(x+y)+3]\)

    \(\Rightarrow (x+y)^3\vdots x+y+3\)

    \(\Leftrightarrow (x+y)^3+3^3-3^3\vdots x+y+3\)

    Theo phân tích hằng đẳng thức: \((x+y)^3+3^3\vdots x+y+3\)

    Suy ra \(3^3\vdots x+y+3(1)\)

    Vì \(x,y\in\mathbb{N}^*\Rightarrow x+y+3\geq 5(2)\)

    Từ \((1);(2)\Rightarrow x+y+3\in\left\{9;27\right\}\)

    \(\Rightarrow x+y\in\left\{6;24\right\}\)

    Nếu \(x+y=6\Rightarrow 3xy=\frac{(x+y)^3}{x+y+3}=24\Rightarrow xy=8\)

    Áp dụng hệ thức Viete suy ra $x,y$ là nghiệm của PT: \(X^2-6X+8=0\)

    \(\Rightarrow (x,y)=(2,4)\) và hoán vị

    Nếu \(x+y=24\Rightarrow 3xy=\frac{(x+y)^3}{x+y+3}=512\Rightarrow xy=\frac{512}{3}\not\in\mathbb{N}\) (loại)

    Vậy \((x,y)=(2,4)\) và hoán vị

      bởi Hoàng Kim 28/12/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON