YOMEDIA
NONE

Hãy tìm giá trị m để phương trình \(2{x^2} - 5x + 2m - 1 = 0\) có hai nghiệm phân biệt \({x_1}\) và \({x_2}\) thỏa mãn: \(\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} = \dfrac{5}{2}.\)

Hãy tìm giá trị m để phương trình \(2{x^2} - 5x + 2m - 1 = 0\) có hai nghiệm phân biệt \({x_1}\) và \({x_2}\) thỏa mãn: \(\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} = \dfrac{5}{2}.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Tìm giá trị của m để phương trình \(2{x^2} - 5x + 2m - 1 = 0\) có hai nghiệm phân biệt \({x_1}\) và \({x_2}\) thỏa mãn: \(\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} = \dfrac{5}{2}.\)

    Phương trình đã cho có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0 \Leftrightarrow {5^2} - 4.2.\left( {2m - 1} \right) > 0\)

    \(\begin{array}{l} \Leftrightarrow 25 - 16m + 8 > 0\\ \Leftrightarrow 16m < 33\\ \Leftrightarrow m < \dfrac{{33}}{{16}}.\end{array}\)

    Với \(m < \dfrac{{33}}{{16}}\) thì phương trình đã cho có hai nghiệm phân biệt \({x_1},\;{x_2}.\)

    Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{5}{2}\\{x_1}{x_2} = \dfrac{{2m - 1}}{2}\end{array} \right..\) (điều kiện \(x_1.x_2\ne 0\Rightarrow m\ne \dfrac {1}2)\)

    Theo đề bài ta có:

    \(\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} = \dfrac{5}{2}\)

    \(\begin{array}{l} \Leftrightarrow 2\left( {{x_1} + {x_2}} \right) = 5{x_1}{x_2}\\ \Leftrightarrow 2.\dfrac{5}{2} = 5.\dfrac{{2m - 1}}{2}\\ \Leftrightarrow 10 = 10m - 5\\ \Leftrightarrow 10m = 15\\ \Leftrightarrow m = \dfrac{3}{2}\;\;\left( {tm} \right).\end{array}\) 

    Vậy \(m = \dfrac{3}{2}\) thỏa mãn bài toán.

      bởi Nguyễn Phương Khanh 10/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON