YOMEDIA
NONE

Giải hệ phương trình: \(\left\{ {\matrix{\displaystyle {{{xy} \over {x + y}} = {2 \over 3}} \cr \displaystyle{{{yz} \over {y + z}} = {6 \over 5}} \cr \displaystyle{{{zx} \over {z + x}} = {3 \over 4}} \cr} } \right.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Điều kiện: \(x \ne  - y;y \ne  - z;z \ne  - x\)

    Từ hệ phương trình đã cho suy ra: \(x \ne 0;y \ne 0;z \ne 0\)

    Do đó

    \(\left\{ {\matrix{\displaystyle
    {{{xy} \over {x + y}} = {2 \over 3}} \cr 
    \displaystyle{{{yz} \over {y + z}} = {6 \over 5}} \cr 
    \displaystyle{{{zx} \over {z + x}} = {3 \over 4}} \cr
    } } \right. \\ \Leftrightarrow \left\{ {\matrix{\displaystyle
    {{{x + y} \over {xy}} = {3 \over 2}} \cr 
    \displaystyle{{{y + z} \over {yz}} = {5 \over 6}} \cr 
    \displaystyle{{{z + x} \over {zx}} = {4 \over 3}} \cr} } \right. \\ \Leftrightarrow \left\{ {\matrix{\displaystyle
    {{1 \over x} + {1 \over y} = {3 \over 2}} \cr 
    \displaystyle{{1 \over y} + {1 \over z} = {5 \over 6}} \cr 
    \displaystyle{{1 \over z} + {1 \over x} = {4 \over 3}} \cr} } \right.\)

    Đặt \(\displaystyle{1 \over x} = a;{1 \over y} = b;{1 \over z} = c\) \((a,b,c \ne 0)\)

    Khi đó hệ phương trình trên trở thành:

    \(\left\{ {\matrix{
    {a + b = \displaystyle{3 \over 2}} \cr 
    {b + c = \displaystyle{5 \over 6}} \cr 
    {c + a =\displaystyle {4 \over 3}} \cr} } \right.\)

    Cộng từng vế của ba phương trình trong hệ ta được:

    \(\eqalign{
    & a + b + b + c + c + a = {3 \over 2} + {5 \over 6} + {4 \over 3} \cr 
    & \Leftrightarrow 2\left( {a + b + c} \right) = {9 \over 6} + {5 \over 6} + {8 \over 6} \cr 
    & \Leftrightarrow a + b + c = {{11} \over 6} \cr 
    & \Rightarrow a = \left( {a + b + c} \right) - \left( {b + c} \right) \cr& = {{11} \over 6} - {5 \over 6} = 1 \cr 
    & b = \left( {a + b + c} \right) - \left( {c + a} \right) \cr& = {{11} \over 6} - {4 \over 3} = {{11} \over 6} - {8 \over 6} = {1 \over 2} \cr 
    & c = \left( {a + b + c} \right) - \left( {a + b} \right) \cr& = {{11} \over 6} - {3 \over 2} = {{11} \over 6} - {9 \over 6} = {1 \over 3} \cr} \)

    Ta thấy \(a=1;b=\displaystyle {1 \over 2};c={1 \over 3}\) thoả mãn điều kiện \(a,b,c \ne 0\).

    Do đó

    \(\left\{ {\matrix{\displaystyle
    {{1 \over x} = 1} \cr 
    \displaystyle{{1 \over y} = {1 \over 2}} \cr 
    \displaystyle{{1 \over z} = {1 \over 3}} \cr
    } } \right. \Leftrightarrow \left\{ {\matrix{
    {x = 1} \cr 
    {y = 2} \cr 
    {z = 3} \cr} } \right. \text{(thoả mãn)}\)

    Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y; z) = (1; 2; 3).\)

      bởi Anh Nguyễn 19/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON